首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
为实现苹果可溶性固形物(SSC)的便携式快速检测,利用环形光纤探头和微型光谱仪搭建便携式苹果可溶性固形物光谱采集系统,结合无信息变量消除(UVE)、遗传算法(GA)、竞争性自适应加权(CARS)算法筛选基于偏最小二乘(PLS)的苹果可溶性固形物的近红外光谱特征波长。另外,采用反向区间最小二乘支持向量机(BiLS-SVM)和GA算法优选基于LS-SVM的特征波长变量,分别建立所选特征波长和全波段的PLS模型和LS-SVM模型。试验结果表明,经过GA-CARS算法从全波段1 512个波长中筛选出的50个特征波长建立的PLS模型效果最好,其预测相关系数和预测均方根误差分别为0.962和0.403°Brix。利用该检测装置结合GA-CARS筛选的特征波长,可有效简化苹果可溶性固形物近红外便携式检测模型并提高模型的预测精度,为进一步构建便携式苹果可溶性固形物检测设备奠定了基础。  相似文献   

2.
西瓜可溶性固形物含量的无损检测对提升其内部品质十分重要。为实现近红外光谱对小型西瓜表面各部位可溶性固形物含量的准确预测,减小检测部位差异对预测模型的影响,以“京秀”西瓜为研究对象,分别采集赤道、瓜脐和瓜梗三部位的漫透射光谱信息,利用偏最小二乘算法(PLS)建立并比较单一检测部位和混合所有检测部位的西瓜可溶性固形物近红外光谱预测模型,并分别采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对西瓜可溶性固形物近红外光谱变量进行特征波长筛选。结果显示,相比于单一检测部位的模型,混合所有检测部位的校正集样本建立的模型取得了较优的预测结果。同时,利用CARS算法筛选的42个特征波长变量建模,对三种检测部位预测集样本的预测结果分别为赤道RP=0.892和RMSEP= 0.684 °Brix,瓜脐RP=0.905和RMSEP= 0.629 °Brix,瓜梗RP=0.899和RMSEP= 0.721 °Brix。模型得到了很大的简化,且预测精度较高。比较发现,利用SPA算法筛选的19个特征波长变量所建模型的预测精度较低。利用三种检测部位的西瓜样本建立的PLS混合预测模型,结合CARS算法进行有效特征波长变量筛选,可提高西瓜可溶性固形物预测模型的精度,实现西瓜表面各部位可溶性固形物含量的准确预测,减小检测部位差异对近红外光谱预测模型的影响。结果为今后开发便携式设备检测西瓜表面各部位可溶性固形含量提供参考依据。  相似文献   

3.
为了提高苹果可溶性固形物含量近红外光谱校正模型的预测能力和稳健性,分别采用反向区间偏最小二乘法、遗传算法和连续投影算法,筛选苹果可溶性固形物的近红外光谱变量,并建立了偏最小二乘回归模型。利用遗传算法筛选的141个变量建立的校正模型,预测效果最好,与全谱建立的校正模型比较,预测相关系数,从0.93提高到0.96,预测均方根误差,从0.30°Brix降低到0.23°Brix。实验结果表明遗传算法结合偏最小二乘回归方法,有效地提高了苹果可溶性固形物近红外光谱检测模型的预测精度。  相似文献   

4.
可溶性固形物含量(SSC)和硬度是哈密瓜划分等级的重要指标,同时也是其成熟度的表征因子。因此,为满足哈密瓜自动化分级和适宜采摘,采用高光谱技术结合特征波长筛选的方法,同时对哈密瓜的可溶性固形物含量、硬度及成熟度进行了无损检测研究。对多元散射校正(MSC)处理后的光谱分别利用连续投影算法(SPA)、竞争性自适应重加权算法(CARS)和CARS-SPA方法筛选了哈密瓜可溶性固形物和硬度的特征波长,并将原始光谱、MSC预处理后的光谱和所筛选的特征波长作为输入变量分别建立哈密瓜可溶性固形物和硬度的支持向量机(SVM)预测模型及成熟度判别模型。结果显示,MSC-CARS-SPA方法所建立的可溶性固形物和硬度SVM预测模型最优,其Rpre, RMSEP和RPD分别为0.940 4, 0.402 7, 2.94 1和0.825 3, 35.22, 1.771。同时对哈密瓜成熟度进行了判别分析,并分别建立了基于全光谱、单一的可溶性固形物或硬度特征波长和主成分分析(PCA)特征融合的哈密瓜成熟度SVM判别模型。结果显示,CARS-PCA-SVM模型的判别结果与全光谱SNV-SVM模型相同,其校正集和预测集判别正确率分别为95%和94%。研究表明,利用高光谱技术结合特征波长筛选方法可实现同时对哈密瓜可溶性固形物和硬度的定量预测及成熟度判别。  相似文献   

5.
应用近红外高光谱成像技术实现三文鱼肉水分含量的快速无损检测。采集来自不同部位的三文鱼肉共90个样本的高光谱图像,提取样本感兴趣区域(ROI)的平均光谱。随机取60个样本作为建模集,其余30个样本作为预测集。分别采用偏最小二乘回归(PLSR)和最小二乘支持向量机(LS-SVM)对全波段和水分含量建立相关性模型,并对预测集样本的水分含量进行预测。再用一种新的变量提取方法random frog选择特征波长,并基于特征波长分别建立水分检测的PLSR和LS-SVM模型。特征波长模型的预测精度虽然稍逊于全波段模型,但是仅用12个变量代替了全波段的151个变量,大大简化了模型,更便于实际应用。PLSR和LS-SVM特征波长模型的预测相关系数(Rp)分别为0.92和0.93,预测均方根误差(RMSEP)分别为1.31%和1.18%,取得了满意的结果。研究表明,近红外高光谱成像与化学计量学方法结合可以准确预测三文鱼肉的水分含量,为鱼肉品质的快速监测提供重要的参考。  相似文献   

6.
为建立预测能力高、稳定性强的可见/近红外漫透射光谱无损检测黄花梨可溶性固形物(SSC)数学模型,对比各种预处理方法、变量优选方法、快速独立主成分分析(FICA)以及最小二乘支持向量机(LS-SVM)对黄花梨SSC模型的影响,得出最佳的组合方法用于建立黄花梨可溶性固形物(SSC)预测模型。采用Quality Spec型光谱仪采集550~950 nm波段范围内的黄花梨漫透射光谱并采用遗传算法、连续投影算法和CARS(competitive adaptive reweighted sampling)三种方法筛选黄花梨可溶性固形物的光谱特征变量,再结合FICA提取光谱主成分,最后采用LS-SVM建立黄花梨的SSC预测模型。结果显示,采用CARS筛选的21个变量,经FICA挑选出12个主成分数,联合LS-SVM所建立的CARS-FICA-LS-SVM黄花梨SSC预测模型性能最佳,建模集和预测集的决定系数及均方根误差分别为0.974,0.116%和0.918,0.158%,同直接采用PLS方法建模相比,变量数从401个下降到21,主成分数由14下降到12,建模集和预测集决定系数分别上升了0.023,0.019,而建模和预测均方根误差分别下降了0.042%和0.010%。CARS-FICA-LS-SVM建立黄花梨SSC预测模型能够有效地简化预测模型并提高预测模型精度。  相似文献   

7.
为实现近红外光谱进行勾兑梨汁中原汁含量的快速检测,采用相同可溶性固形物含量的新鲜梨汁和果汁粉冲剂按照原汁含量为0%~100%进行勾兑,并结合遗传算法(GA)、粒子群算法(PSO)以及萤火虫算法(GSO & FA)进行特征波长筛选,比较分析四种算法分别建立的偏最小二乘(PLS)模型。结果表明,GA-PLS,PSO-PLS,GSO-PLS,FA-PLS四种模型均能够剔除大部分波长变量,其中以FA-PLS模型效果最佳,不仅保证模型的稳健性,而且简化了模型,提高了预测的精度。为了进一步优选特征波长,利用连续投影算法(SPA)在FA基础上做进一步波长筛选,并比较全波段PLS,SPA-PLS,FA-PLS,FA-SPA-PLS模型,四种模型泛化能力为:FA-PLS>PLS>FA-SPA-PLS>SPA-PLS,其预测均方根误差分别为0.029 1,0.033 3,0.033 9和0.137 0,相应的波长变量数量依次367,765,20和18。其中SPA-PLS波长变量最少,但预测误差远远高于其他三种模型,综合考虑预测精度与波长变量数目,FA-SPA-PLS模型不仅波长变量较少而且预测精度较高,能够有效鉴别勾兑梨汁中原汁含量。研究利用近红外光谱技术为快速鉴别勾兑果汁提供一种有益思路,并通过波长变量筛选简化定量分析模型。  相似文献   

8.
应用近红外高光谱成像技术实现三文鱼肉水分含量的快速无损检测。采集来自不同部位的三文鱼肉共90个样本的高光谱图像, 提取样本感兴趣区域(ROI)的平均光谱。随机取60个样本作为建模集, 其余30个样本作为预测集。分别采用偏最小二乘回归(PLSR)和最小二乘支持向量机(LS-SVM)对全波段和水分含量建立相关性模型, 并对预测集样本的水分含量进行预测。再用一种新的变量提取方法random frog选择特征波长, 并基于特征波长分别建立水分检测的PLSR和LS-SVM模型。特征波长模型的预测精度虽然稍逊于全波段模型, 但是仅用12个变量代替了全波段的151个变量, 大大简化了模型, 更便于实际应用。PLSR和LS-SVM特征波长模型的预测相关系数(Rp)分别为0.92和0.93, 预测均方根误差(RMSEP)分别为1.31%和1.18%, 取得了满意的结果。研究表明, 近红外高光谱成像与化学计量学方法结合可以准确预测三文鱼肉的水分含量, 为鱼肉品质的快速监测提供重要的参考。  相似文献   

9.
近红外光谱技术结合RCA和SPA方法检测土壤总氮研究   总被引:1,自引:0,他引:1  
基于近红外光谱技术结合连续投影算法和回归系数分析对检测土壤总氮含量进行研究。采集农田土壤样本近红外光谱数据,土壤样本数量共394个。由于原始光谱数据量大,在500~2 500 nm光谱波长范围基础上,为简化模型,在原始光谱基础上采用连续投影算法和回归系数分析提取特征变量,以两种变量选择方法提取的特征变量作为输入,分别采用偏最小二乘回归(PLS)、 多元线性回归(MLR)和最小二乘支持向量机(LS-SVM)建模方法建立总氮预测模型,共建立了9个预测模型,最优预测集的决定系数为0.81,剩余预测偏差RPD为2.26。研究表明,基于连续投影算法和回归系数分析选择的特征波长可以应用于近红外光谱检测土壤总氮含量,同时可以大大简化模型,适合开发便携式土壤养分检测仪。  相似文献   

10.
可溶性固形物(SSC)是脐橙重要内部品质之一。采用QualitySpec型光谱仪在350~1000 nm波段范围采集脐橙的可见/近红外漫透射光谱,采用CARS(competitive adaptive reweighted sampling)变量选择方法筛选出与脐橙SSC相关的重要变量,并与无信息变量消除(UVE)及连续投影算法(SPA)比较。最后,对选择的38个重要波长变量应用偏最小二乘(PLS)回归建立脐橙SSC预测模型,并对未参与建模的75个样品进行预测。研究结果表明,CARS方法优于UVE及SPA变量选择方法,能有效地筛选出重要波长变量。CARS-PLS建立的SSC预测模型优于全光谱的PLS模型,其校正集及预测集的相关系数分别为0.948和0.917,均方根误差分别为0.347%和0.394%。因此,可见/近红外漫透射光谱结合CARS方法可以预测脐橙可溶性固形物,CARS变量选择方法能有效简化预测模型和提高模型的预测精度。  相似文献   

11.
以高光谱数据有效预测苹果可溶性固形物含量   总被引:4,自引:0,他引:4  
从高光谱数据中选取能够有效进行内部品质检测的特征波长,是利用高光谱成像技术进行水果品质定量分析的关键。本文采用遗传算法(GA)、连续投影算法(SPA)和GA-SPA算法分别从400~1 000 nm的苹果高光谱图像中提取特征波长,利用偏最小二乘法(PLS)、最小二乘支撑向量机(LS-SVM)和多元线性回归(MLR)建模进行苹果可溶性固形物含量(SSC)的定量分析并进行了综合比较。160个样品中,120个用于建模,40个用于预测。比较发现SPA-MLR模型获得了最好的结果,R2p,RMSEP和RPD分别为0.950 1,0.308 7和4.476 6。结果表明:SPA能够有效地用于高光谱数据的变量选择,利用SPA-MLR可建立稳健的苹果SSC预测模型,较少的有效变量和MLR模型的易解释性表明该模型在在线检测和便携式仪器开发中具有较大的应用潜力。  相似文献   

12.
采用高光谱成像技术结合不同的特征提取方法,实现了对草莓可溶性固形物含量的检测。通过提取154颗成熟无损伤草莓的高光谱图像的874~1 734 nm范围光谱信息,对941~1 612 nm光谱采用移动平均法(moving average,MA)进行预处理。基于残差法剔除19个异常样本后将剩余135个样本分为建模集(n=90)和预测集(n=45)。采用连续投影算法(successive projections algorithm, SPA),遗传偏最小二乘算法(genetic algorithm-partial least squares, GAPLS)结合连续投影算法(GAPLS-SPA),加权回归系数(weighted regression coefficient, Bw)以及CARS法(competitive adaptive reweighted sampling)选择特征波长分别提取14,17,24与25个特征波长,并采用主成分分析(principal component analysis, PCA)与小波变换(wavelet transform, WT)分别提取20与58个特征信息。分别基于全波段光谱、特征波长与特征信息建立PLS模型。所有模型都取得了较好的效果,基于全波段光谱的PLS模型与基于WT提取的特征信息的PLS模型的效果最优,建模集相关系数(rc)与预测集相关系数(rp)均高于0.9。结果表明高光谱成像技术结合特征提取方法可用于草莓可溶性固形物含量的检测。  相似文献   

13.
由于高光谱数据量大、维数高,光谱噪声明显、散射严重等特征导致光谱建模时关键变量提取较为困难,同时,高光谱图像的获取会受非单色光、杂散光、温度等多种因素的影响,从而使高光谱数据与待测性质之间有一定非线性关系。为此,提出采用正自适应加权算法(CARS)对可见-近红外高光谱高维数据进行关键变量筛选,并与全光谱和经典变量提取方法SPA,MC-UVE,GA和GA-SPA方法进行比较。以200个库尔勒香梨为研究对象,采用SPXY方法将样本划分为校正集和预测集,校正集和预测集分别包含150个和50个样本。基于不同方法筛选的变量,分别建立线性PLS模型及非线性LS-SVM模型,r2,RMSEP和RPD用于模型性能的评估。综合比较发现,GA,GA-SPA和CARS变量筛选方法能够有效地筛选出原始高光谱数据中具有强信息且对外界影响因素不敏感的变量,适用于高光谱数据关键变量的提取,其中CARS变量筛选效果最佳,基于CARS获取的关键变量构建的非线性LS-SVM库尔勒香梨SSC含量预测模型获得了最优的预测结果,r2pre,RMSEP和RPD分别为0.851 2,0.291 3和2.592 4。研究表明,CARS方法是一种有效的高光谱关键变量筛选方法,利用高光谱数据,非线性LS-SVM模型比线性PLS模型更适合于香梨品质的定量预测。  相似文献   

14.
应用近红外高光谱成像技术预测甘蔗可溶性固形物含量   总被引:5,自引:0,他引:5  
为了探究应用近红外高光谱成像技术对甘蔗内部可溶性固形物(SSC)预测的可行性,试验样本选择三种不同品种中的240个甘蔗节作为研究对象。通过高光谱成像系统获取甘蔗节的近红外光谱信息和图像信息,并分别探讨了光谱信息和图像纹理信息对甘蔗可溶性固形物预测的可行性。采用最小二乘回归(PLSR),最小二乘支持向量机(LS-SVM)及主成分回归(PCR)建模方法构建甘蔗可溶性固形物的预测模型。比较了连续投影算法(SPA)、无信息变量消除算法(UVE)及区间偏最小二乘(iPLS)特征提取方法对预测结果的影响。实验结果表明:基于甘蔗的光谱信息能实现可溶性固形物的预测,其中偏最小二乘回归模型的建模集和预测集的相关系数分别为0.879和0.843,均方根误差分别为0.644和0.742。通过UVE算法提取105个有效波长所建立的PLSR模型的建模集及预测集相关系数分别为0.860和0.813,均方根误差分别为0.693和0.810。  相似文献   

15.
为提高生鲜羊肉储存期内(4,8和20 ℃环境)挥发性盐基氮(TVB-N)的近红外光谱(NIR)检测的稳定性和准确性,选取特征光谱和预测模型是关键步骤。以121个羊肉样品为实验对象,采集生鲜羊肉680~2 600 nm波段的近红外光谱。以多元散射校正(MSC)、标准正态变换(SNV)等散射校正方法,Savitzky-Golay卷积平滑(SGS)、移动平均平滑(MAS)等平滑处理方法,以及归一化(Normalization)、中心化(Centering)、标准化(Autoscaling)等尺度缩放方法分别预处理光谱数据后建立偏最小二乘法(PLS)预测模型。比较发现SGS处理的光谱建模效果最好。利用蒙特卡洛采样(MCS)法及马氏距离法(MD)消除了羊肉光谱的5个异常数据。运用光谱-理化值共生距离(SPXY)算法划分总样本的75%(87个)为校正集样本,剩余29个为验证集样本,利用竞争性自适应重加权法(CARS)、无信息变量消除法(UVE)、改进的无信息变量消除法(IUVE)和连续投影算法(SPA)提取特征光谱得到的波长个数分别为14,713,144和15。将全光谱和4种方法提取的特征波长作为输入变量建立预测模型,CARS提取的波长所建立模型的性能优于UVE、IUVE和SPA提取的波长所建立模型的性能,表明CARS方法可以有效简化输入变量并提高预测模型的性能。改进后得到的IUVE法相比于UVE法,筛选出的波长数更少且模型性能有所提升。以提取的特征波长建立PLS,支持向量机(SVM)和最小二乘支持向量机(LS-SVM)预测模型,SVM模型得到最优的校正集预测结果,其中CARS-SVM预测模型的校正决定系数(R2C)和校正均方根误差(RMSEC)分别为0.939 1和1.426 7,最优的验证集预测效果为LS-SVM预测模型得到,其中IUVE-LS-SVM预测模型的验证决定系数(R2V)和验证均方根误差(RMSEV)分别为0.856 8和1.886 2。基于近红外特征光谱建立简化、优化的生鲜羊肉储存期TVB-N预测模型,为实现快速无损检测生鲜羊肉中的TVB-N浓度提供技术支持。  相似文献   

16.
应用可见/短波近红外光谱(Vis/SW-NIRS)测量土壤速效氮(N)和速效钾(K)含量。光谱预处理包括标准正态变换(SNV),多元散射校正(MSC)和Savitzky Golay平滑结合一阶导数,以消除系统噪声和外部干扰,分别应用偏最小二乘(PLS)和最小二乘支持向量机(LS-SVM)方法建立校正模型。最小二乘支持向量机(LS-SVM)输入分别包括主成分分析得到的主成分(PCs)和PLSR建模得到的潜在变量(LVs)和由PLSR模型回归系数得到有效波长(EWs)。结果表明,三种输入的LS-SVM模型都优于PLS模型, 其中EWs-LS-SVM模型最佳,速效氮(N)的相关系数(R2)和预测均方误差RMSEP分别0.82和17.2,速效钾(K)为0.72和15.0。结果表明,利用可见光和短波近红外光谱(Vis/ SW-近红外光谱)(325~1 075 nm)的LS-SVM的结合,可以作为一个精确的土壤理化性质的测定方法。  相似文献   

17.
高光谱成像技术的油菜叶片氮含量及分布快速检测   总被引:4,自引:0,他引:4  
应用高光谱成像技术实现了油菜苗-花-角果整个生命期叶片氮含量的快速检测和氮素水平分布的可视化。采集三个生长时期共计420个叶片样本的高光谱图像信息(380~1 030 nm),提取图像中感兴趣区域的平均光谱数据,经过不同光谱预处理后,利用连续投影算法(SPA)选择特征波长,将提取的12个特征波长(467,557,665,686,706,752,874,879,886,900,978和995 nm)作为自变量,叶片氮含量作为因变量,分别建立偏最小二乘法(PLS)和最小二乘-支持向量机(LS-SVM)模型。SPA-PLS和SPA-LS-SVM模型对叶片氮含量的预测相关系数RP分别为0.807和0.836,预测均方根误差RMSEP分别为0.387和0.358。高光谱图像中的每一个像素点都有对应的光谱反射值,利用结构简单、更易提取回归系数的SPA-PLS模型,快速计算出12个特征波长下高光谱图像中每个像素点对应的氮含量预测值,结合像素点的空间位置生成氮素浓度的叶面分布图。可视化分布图详细且直观的反应出同一叶片内部或不同叶片之间氮含量的差异。结果表明,应用高光谱成像技术分析整个油菜生长期的叶片氮含量及其可视化分布是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号