首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
The energy transfer processes in Lu2SiO5:Ce3+ luminescence was investigated through the temperature dependent luminescence under excitation with VUV-UV. Ce1 center emission peaking at 393 and 422 nm and Ce2 center emission peaking at 462 nm were observed. Ce2 center emission is enhanced with the temperature, which can be explained by the rate of energy transfer from Ce1 center increases when the temperature rises. The Ce1 emission shows the thermal quenching effect under the direct excitation of Ce3+ at 262 nm. However, under the interband excitation of 183 nm, the Ce1 center emission exhibits undulating temperature dependence. This is because the emission is governed by thermal quenching and possible thermal enhancement of the transport of free carriers with the rising temperature.  相似文献   

2.
Er3+ doped ZnO-CaO-Al2O3 nano-composite phosphor has been synthesized through combustion method and its emission and harmonic generation properties have been studied. The X-ray diffraction and thermal analysis techniques have been used to prove the dual phase (ZnO and CaO-Al2O3) nature of the phosphor. The phosphor has shown up-conversion emission on near-infra-red (976 nm) excitation and down-conversion emission on 355 nm excitation in presence of Er3+ and thus behaves as a dual mode phosphor. On excitation with 976 nm diode laser, material shows color tunability (calcination of composite material at different temperatures). Formation of ZnO nanocrystals on heat treatment of as-synthesized sample has shown its characteristic emission at 388 nm and also the energy transfer from ZnO to Er3+ ions. The low temperature emission measurements have been carried out and the results have been discussed. Phosphor has shown strong second harmonic generation (SHG) at 532 nm on 1064 nm and at 266 nm on 532 nm excitation.  相似文献   

3.
RE3+-activated α- and β-CaAl2B2O7 (RE=Tb, Ce) were synthesized with the method of high-temperature solid-state reaction. Their VUV excitation and VUV-excited emission spectra are measured and discussed in the present article. The charge transfer band of Tb3+ and Ce3+ is respectively calculated to be at 151±2 and 159±3 nm. All the samples show an activator-independent excitation peak at about 175 nm and an emission peak at 350-360 nm ascribed to the host absorption and emission band, respectively.  相似文献   

4.
Luminescent properties of Pr3+ or Mn2+ singly doped and Pr3+, Mn2+ co-doped LaMgB5O10 are investigated by synchrotron radiation VUV light. When LaMgB5O10:Pr3+ is excited at185 nm, the photon cascade emission between 4f levels of Pr3+ is observed. In the excitation spectra of LaMgB5O10:Mn2+ monitoring the 615 nm emission of Mn2+, several excitation bands in a spectral range from 330 to 580 nm are recorded, among which the most intense band is centered at 412 nm (6A1g4Eg-4A1g). This band has considerable spectra overlap with the 410 nm emission (1S01I6) of Pr3+, which is favorable for energy transfer from Pr3+ to Mn2+. Such energy transfer is observed in the co-doped sample, converting the violet emission (410 nm) of Pr3+ into the red emission (615 nm) of Mn2+. The concentration dependence of transfer efficiency is also investigated.  相似文献   

5.
Using Czochralski (CZ) pulling method, an Er3+/Yb3+-codoped NaY(WO4)2 crystal was prepared. Absorption spectra, emission spectra and excitation spectra of this crystal were measured at room temperature. Some optical parameters, such as intensity parameters, spontaneous emission probabilities and lifetimes, were calculated from absorption spectra with Judd-Ofelt (J-O) theory. Upconversion luminescence excited by a 970 nm diode laser was studied. In this crystal, green upconversion luminescence is particularly intensive. Energy transfer mechanisms that play an important role in upconversion processes were analyzed. Two cross-relaxation processes: 4G11/2 + 4I9/2 → 2H11/2 (or 4S3/2) + 2H11/2 (or 4S3/2), and 4G11/2 + 4I15/2 → 2H11/2 (or 4S3/2) + 2I13/2, which contribute to the intensive green luminescence under 378 nm excitation, were put forward. Background energy transfer 4G11/2(Er3+) + 2F7/2(Yb3+) → 4F9/2(Er3+) + 2F5/2(Yb3+) was also demonstrated.  相似文献   

6.
OH doped and Bi-rich Bi4Ge3O12 (BGO) single crystals were grown by Vertical Bridgman (VB) method. The structure of these crystals was determined by XRD, and the emission spectra in visible and near infrared region (NIR) were measured at room temperature. The emission spectrum of Bi-rich BGO has extra peaks at 385, 367 and 357 nm, Bi-rich BGO after annealing in Ar at 500 °C for 5 h shows a significant emission band peaking around 1170 nm under 808 nm laser diodes (LDs) excitation, and OH doped BGO shows a noticeable emission band centered at about 1346 nm under 980 nm LDs excitation. A brief discussion is presented.  相似文献   

7.
Radioluminescence and thermally stimulated luminescence measurements on Lu2O3, Lu2SiO5 (LSO) and Lu2SiO5:Ce3+ (LSO:Ce) reveal the presence of intrinsic ultraviolet luminescence bands. Characteristic emission with maximum at 256 nm occurs in each specimen and is attributed to radiative recombination of self-trapped excitons. Thermal quenching of this band obeys the Mott-Seitz relation yielding quenching energies 24, 38 and 13 meV for Lu2O3, LSO and LSO:Ce, respectively. A second intrinsic band appears at 315 nm in LSO and LSO:Ce, and at 368 nm in Lu2O3. Quenching curves for these bands show an initial increase in peak intensity followed by a decrease. Similarity in spectral peak position and quenching behavior indicate that this band has a common origin in each of the samples and is attributed to radiative recombination of self-trapped holes, in agreement with previous work on similar specimens. Comparison of glow curves and emission spectra show that the lowest temperature glow peaks in each specimen are associated with thermal decay of self-trapped excitons and self-trapped holes. Interplay between the intrinsic defects and extrinsic Ce3+ emission in LSO:Ce is strongly indicated.  相似文献   

8.
For LiYF4:Ce3+, LiLuF4:Ce3+ and LuF3:Ce3+ crystals UV/visible emission and time-resolved VUV/UV excitation spectra were recorded at liquid helium temperature with spectral resolution of 0.1 nm for excitation spectra and better than 0.3 nm for emission spectra. Well resolved fine structures due to zero-phonon lines were clearly observed in both excitation and emission spectra for LiYF4:Ce3+ and LiLuF4:Ce3+. For LuF3:Ce3+ crystal no fine structure was detected in the spectra even at the highest spectral resolution. Under the host excitation, the fine structure for high-energy emission band of Ce3+ (5d-2F5/2) in LiLuF4:Ce3+ becomes well pronounced because of weaker reabsorption effect, as compared to Ce3+ 4f-5d absorption, due to small penetration depth for exciting radiation. As a result the crystal-field splitting for 2F7/2 and 2F5/2 levels of Ce3+ in LiLuF4 crystal was measured. First observation of zero-phonon lines at ∼81,550 and ∼82,900 cm−1 as well as vibronic side bands due to interconfigurational 4f14-4f135d transitions in Lu3+ is reported for excitation spectrum of LiLuF4:Ce3+.  相似文献   

9.
A red-emitting phosphor NaSrB5O9:Eu3+ was synthesized by employing a solid-state reaction (SSR) method. The structures of the phosphors were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) and Raman studies. The band at ~282 nm in the excitation spectra indicated the charge transfer band (CTB) of B-O in the host, whereas the CTB of Eu-O was observed at ~275 nm for the NaSrB5O9:Eu3+ (Eu3+=1 at.%) phosphor, which was supported by diffuse reflectance spectroscopy (DRS) measurements. The photoluminescence (PL) measurements exhibited a strong red emission band centered at about 616 nm (5D07F2) under an excitation wavelength of 394 nm (7F05L6). Upon host excitation at 282 nm, the pristine NaSrB5O9 exhibited a broad UV emission centered at ~362 nm. The energy transfer from host to Eu3+ ions was confirmed from luminescence spectra, excited with a 355 nm Nd:YAG laser. In addition, the asymmetric ratios indicate a higher local symmetry around the Eu3+ ion in the host. The calculated CIE (Commission International de l′Eclairage) coordinates displayed excellent color purity efficiencies (around 99.7%) compared to other luminescent materials.  相似文献   

10.
Cerium-doped Gd2SiO5 (GSO:Ce) films have been prepared on (1 1 1) silicon substrates by the sol-gel technique. Annealing was performed in the temperature range from 400 to 1000 °C. X-ray diffraction (XRD), and atomic force microscopy (AFM) were used to investigate the structure and morphology of GSO:Ce films. Results showed that GSO:Ce film starts to crystallize at about 600 °C, GSO:Ce films have a preferential (0 2 1) orientation, as the annealing temperature increase, the (0 2 1) peak intensity increases, the full width of half maximum (FWHM) decreases, and the grain size of GSO:Ce films increases. Emission spectra of GSO:Ce films were measured, results exhibit the characteristic blue emission peak at 427 nm.  相似文献   

11.
This report presents the luminescence properties of Ce3+ and Pr3+ activated Sr2Mg(BO3)2 under VUV-UV and X-ray excitation. The five excitation bands of crystal field split 5d states are observed at about 46 729, 44 643, 41 667, 38 314 and 29 762 cm−1 (i.e. 214, 224, 240, 261 and 336 nm) for Ce3+ in the host lattice. The doublet Ce3+ 5d→4f emission bands were found at about 25 840 and 24 096 cm−1 (387 and 415 nm). The influence of doping concentration and temperature on the emission characteristics and the decay time of Ce3+ in Sr2Mg(BO3)2 were investigated. For Pr3+ doped samples, the lowest 5d excitation band was observed at about 42017 cm−1 (238 nm), a dominant band at around 35714 cm−1 (280 nm) and two shoulder bands were seen in the emission spectra. The excitation and emission spectra of Ce3+ and Pr3+ were compared and discussed. The X-ray excited luminescence studies show that the light yields are ∼3200±230 and ∼1400±100 photons/MeV of absorbed X-ray energy for the samples Sr1.86Ce0.07Na0.07Mg(BO3)2 and Sr1.82Pr0.09Na0.09Mg(BO3)2 at RT, respectively.  相似文献   

12.
OH and Cl doped Bi4Ge3O12 (BGO) single crystals had been grown by Vertical Bridgman (VB) method. The structure of these crystals was determined by XRD, the transmittance and emission spectra in near infrared region (NIR) were measured at room temperature. 5% OH doped BGO shows a significant emission band peaking around 1181 nm under 808 nm laser diodes (LDs) excitation, and the 5% Cl doped BGO exhibits a relatively weak emission band as well. 100% and 5% OH doped BGO show noticeable emission band centered at about 1346 nm under 980 nm LDs excitation.  相似文献   

13.
Up-conversion blue emissions of trivalent thulium ions in monoclinic KGd(WO4)2 single crystals at 454 and 479 nm are reported for a single pump laser source at 688 nm. We grew thulium-doped KGd(WO4)2 single crystals at several concentrations from 0.1% to 10%. We recorded a polarized optical absorption spectrum for the 3F2+3F3 energy levels of thulium at room temperature and low temperature (6 K). From the low temperature emission spectra we determined the splitting of the 3H6 ground state. The blue emissions are characterized as a function of the dopant concentration and temperature from 10 K to room temperature. To our knowledge, this is the first time that sequential two-photon excitation process (STEP) generated blue emissions in thulium-doped single crystals with a single excitation wavelength.  相似文献   

14.
A new self-activated yellow-emitting Zn2V2O7 phosphor was synthesized by high temperature solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the sample with monoclinic formation of Zn2V2O7. The excitation and emission spectra indicated the phosphor can be efficiently excited by near ultraviolet (NUV) light in 220–400 nm range and exhibit a bright broad yellow emission with the highest emission intensity at 531 nm. The broad emission band from 400 to 650 nm can be attributed to the charge transfer transition in the VO4 tetrahedra, which suggests that the phosphor is a promising yellow phosphor applied for white light-emitting diodes (WLED).  相似文献   

15.
Ce:Lu2Si2O7闪烁晶体的结构和光谱特性   总被引:1,自引:0,他引:1       下载免费PDF全文
严成锋  赵广军  杭寅  张连翰  徐军 《物理学报》2005,54(8):3745-3748
采用中频感应提拉法生长出Ce:Lu2Si2O7(Ce:LPS) 晶体. 通过x射线粉 末衍射分析,晶体结构属单斜晶系的C2/m空间群. 光学显微镜下可观测到晶体的(110 )解理. 在室温下测试了Ce:LPS晶体的吸收光谱、激发光谱和发射光谱. 结果表明,Ce:LPS 晶体的吸收峰只有两个,分别位于302和349 nm,且与激发峰的位置一致,归因于Ce3+ 的4f1→5d1跃迁的特征吸收所致. 发射光谱具有Ce3+< /sup>典型的双峰特征 ,经Gaussian多峰值拟合,带状谱是由384和407 nm两个发射峰叠加而成,且后者的强度明 显高于前者. 关键词: 2Si2O7')" href="#">Ce:Lu2Si2O7 提拉法 晶体结构 光学 特性  相似文献   

16.
Host-lattice emission, energy transfer and degradation processes are characterized in undoped and Eu-doped BaMgAl10O17. Undoped BaMgAl10O17 exhibits a broad emission centered at 265 nm when excited at wavelengths shorter than 190 nm. This emission is assigned to exciton recombination at Ba-O groups in the cation layer of the lattice. The emission exhibits excellent overlap with the excitation band of Eu2+ in this host, providing a means of host-to-activator energy transfer in the doped phosphor. The exciton emission is relatively stable to thermal damage, but undergoes a peak shift and significant decrease in intensity after exposure to VUV radiation. Heating of VUV-damaged materials in air leads to some repair of the spectral properties.  相似文献   

17.
Fine-sized (La1−x,Cex)Sr2AlO5 (LSA:Ce) yellow phosphor particles were prepared by spray pyrolysis. The crystal structure and optical properties of prepared LSA:Ce particles were studied by changing the reduction temperature and the Ce content. The LSA:Ce particles had spherical-like shape and fine size of less than ∼2 μm in the reduction temperature range from 1300 to 1450 °C. The luminescence intensity was steadily improved by elevating the reduction temperature due to the increase of crystallinity. A redshift in the emission peak was observed on increasing the Ce content due to the reduction of Ce-O distance. Concentration quenching in the luminescence intensity was observed when the Ce concentration was 1% (x=0.01), which was caused mainly by the electric dipole-dipole interaction. The critical transfer distance was calculated as 29 Å, which is in good agreement with the value estimated from the spectral data.  相似文献   

18.
CaS:Ce, Sm nanophosphors were synthesized via solid state diffusion method. X-Ray diffraction confirmed the cubic crystalline phase of CaS:Ce, Sm nanoparticles. The particle size calculated using Debye-Scherrer formula was found to be 52 nm. The morphological investigations of the nanoparticles were made using TEM and found to have nearly spherical morphology with diameter 45-50 nm, which is in close agreement with the XRD result. The PL emission characteristics of CaS:Ce, Sm as a function of cerium and samarium concentrations have been studied and CaS:Ce0.6Sm0.4 system has maximum emission intensity, hence it was opted for further studies. The CaS:Ce0.6Sm0.4 system showed independent emission of Sm and Ce when excited at 330 and 450 nm, respectively. To study the energy transfer between cerium and samarium, the CaS:Ce0.6Sm0.4 was excited at wavelengths other than the excitation wavelengths of Ce (450 nm) and Sm (330 nm). The existence of Ce emission (at an excitation of 390 nm) even in the absence of Ce excitation band and Sm emission at an excitation of 405 nm, which is the excitation band of Ce, indicates the energy transfer at these two wavelengths. Thermoluminescence characteristics of 60Co irradiated CaS:Ce0.6Sm0.4 have been investigated for different doses of 0.14-125 Gy. All the glow curves show a single peak at 475 K. With increasing dose, the intensity of this peak increases and a shoulder is formed on the lower temperature side at 415 K at 21 Gy of exposure. CaS:Ce0.6Sm0.4 shows almost linear dose dependence up to 125 Gy.  相似文献   

19.
The Y2O3:Eu3+,Mg2+,TiIV materials (xEu: 0.02, xMg: 0.08, xTi: 0.04) were prepared by solid state reaction. The purity and crystal structure of the material was studied with the X-ray powder diffraction. Luminescence properties were studied in the UV-VUV range with the aid of synchrotron radiation. The emission of Y2O3:Eu3+,Mg2+,TiIV had a maximum at 612 nm (λexc: 250 nm) due to the 5D07F2 transition of Eu3+. The excitation spectra (λem: 612 nm) showed a broad band at 233 nm, due to the charge transfer transition between O2− and Eu3+, and at 297 nm due to the Ti→Eu3+ energy transfer. Only very weak persistent luminescence was discovered. In the room and 10 K temperature excitation spectra, the line at 208 nm is due to the formation of a free exciton (FE) and a broad band at 199 nm was related to the valence-to-conduction band absorption of the Y2O3 host lattice. The absorption edge was ca. 205 nm giving 6.1 eV as the energy gap of Y2O3.  相似文献   

20.
The photoluminescence (PL) spectra, PL excitation spectra, color coordinates, and X-ray diffraction spectra are reported for SrGa2S4:Sn,Re(=Ce and Gd, respectively) phosphors. By mixing SrGa2S4:Sn,Ce phosphors with different Ce3+ concentrations, white emissions can be obtained under the excitation of a 340-nm UV LED. Emissions in the green to yellow color range can be obtained from SrGa2S4:Sn,Gd phosphors. The rare earth ions enhance the green emission band, which peaks at 534 nm, instead of the yellow one. The origin of this enhancement is discussed. The resonant energy transfer rates are estimated in the cases from Ce3+ to the green and yellow centers of Sn2+ and between the yellow centers and the green centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号