首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
本文研究了氧化石墨烯负载Pt单原子(Pt_1/Gr-O)催化硼胺烷(NH_3BH_3)全水解反应机理,即一分子的NH_3BH_3生成三分子的氢气(H_2)的过程,在水解路径中,首先吸附的硼胺烷连续断裂两个B-H键生成第一分子的H_2.接着,一个H_2O分子与*BHNH_3基团(*表示吸附态)反应生成*BH(H_2O)NH_3,其中伸长的O-H键断裂后形成*BH(OH)NH_3.然后,第二个H_2O与*BH(OH)NH_3反应生成*BH(OH)(H_2O)NH_3,在指向Pt_1/Gr-O表面的O-H断裂后,生成BH(OH)_2NH_3并脱附到水溶液中,两个水分子脱氢产生的两个H原子脱附生成第二个H_2分子,且Pt_1/Gr-O催化剂恢复.脱附后的BH(OH)_2NH_3在水溶液中水解生成第三个H_2分子.纵观整个水解反应,H_2O分子和*BHNH_3基团的结合是反应速控步,其反应能垒是16.1 kcal/mol.因此,Pt_1/Gr-O有希望成为室温催化NH_3BH_3全水解催化剂.  相似文献   

2.
本文用激光闪光光解技术研究了光诱导生物醌杜醌激发三重态(3DQ*)和色氨酸(Trp)与酪氨酸(Tyr)在乙腈-水(MeCN-H2O)及乙二醇-水(EG-H2O)均相溶液中的光化学反应,分析了反应的机理,并基于Stern-Volmer方法测量了反应速率常数. 光解DQ体系可以生成3DQ*,3DQ*与Trp、Tyr发生的氢原子转移反应占主导地位. 对于DQ/Trp/MeCN-H2O和DQ/Trp/EG-H2O溶液,3DQ*与Trp反应生成杜醌中性自由基DQH·、以碳为中心的色氨酸中性自由基Trp·/NH和以氮为中心的色氨酸中性自由基Trp/N·. 对于DQ/Tyr/MeCN-H2O和DQ/Tyr/EG-H2O溶液,3DQ*与Tyr反应生成DQH·和酪氨酸中性自由基Tyr/O·. 3DQ*与Trp、Tyr的氢原子转移反应速率常数都在109 L·mol-1·s-1量级,反应近似受扩散控制. MeCN/H2O均相溶液中3DQ*与Trp、Tyr的反应速率常数要明显高于EG/H2O均相溶液中的反应速率常数,这与Stokes-Einstein方程定性一致.  相似文献   

3.
采用M06-2X和CCSD(T)高阶量化计算和传统过渡态理论研究硫酸催化乙二醛气体相水化反应.对HCOCHO+H2O, HCOCHO+H2O+H2O, HCOCHO+H2O+H2O, HCOCHO+H2O...H2SO4和HCOCHO+H2O+H2SO4五个路径的反应机理和速率常数进行了研究.计算结果表明硫酸具有较强的催化能力,能显著减小乙二醛水化反应的能垒,在CCSD(T)/6-311++G(3df,3pd)//M06-2X/6-311++G(3df,3pd)理论水平,当硫酸分子参与乙二醛水化反应时,反应能垒从37.15 kcal/mol减少至7.08 kcal/mol.在室温条件下,硫酸催化乙二醛水化反应的反应速率1.34×10-11 cm3/(molecule.s),是等量水分子参与乙二醛水化反应的速率的1012倍,大于乙二醛与OH自由基反应的反应速率1.10×10-11 cm3/(molecule.s).这表明大气条件下,硫酸催化乙二醛水化反应可以发生,同乙二醛与OH自由基反应相竞争.  相似文献   

4.
本文通过密度泛函方法计算6H-SiC(0001)表面对氧分子和水分子的吸附. 在6H-SiC(0001)表面上吸附的O2分子自发地解离成O*,并被吸收在C与Si原子之间的空位上. 吸附的H2O自发地分解成OH*和H*,它们都被吸附在Si原子的顶部,OH*进一步可逆地转化为O*和H*. H*可以使Si悬键饱和并改变O*的吸附类型,并进一步稳定6H-SiC(0001)表面并防止其转变为SiO2.  相似文献   

5.
本文基于第一性原理研究了利用具有幻数结构特点的Pt3X(X=Al,Si,Cu)团簇仅通过一步反应就能催化分解水制氢的反应过程. 吸附物H2O@Pt3X团簇在波长300∽760 nm的紫外和可见光范围内有强吸收,表明太阳光可以方便地用于Pt3X的催化水解制氢的反应. 此外,水解后滞留在团簇上的O原子可在反应活化能为0.34∽0.58 eV内与CO氧化反应生成CO2. 这个通过氧化消除“毒性”CO的结果表明了反应副产物有能作催化剂的循环再利用能力. 本文发现生成的CO2分子还可以在323 K的温度下脱离Pt3X小团簇.  相似文献   

6.
本文利用266 nm波长的激光及程序升温脱附的方法研究了甲醇在ZnO(0001)表面的光催化反应. TPD结果显示部分的CH3OH以分子的形式吸附在ZnO(0001)表面,而另外一部分在表面发生了解离. 实验过程中探测到H2,CH3·,H2O,CO,CH2O,CO2和CH3OH这些热反应产物. 紫外激光照射实验结果表明光照可以促进CH3OH/CH3O·解离形成CH2O,在程序升温或光照的过程中它又可以转变为HCOO-. CH2OHZn与OHad反应在Zn位点上形成H2O分子. 升温或光照都能促进CH3O·转变为CH3·. 该研究对CH3OH在ZnO(0001)表面的光催化反应机理提供了一个新的见解.  相似文献   

7.
本文利用量子化学计算方法,研究了甲胺和水复合离子团簇[(CH3NH2)(H2O)n]+的几何结构、能量和红外光谱,揭示了结构生长模型、氢键作用机制和质子转移机理. 研究结果表明,在[(CH3NH2)(H2O)n]+团簇中,甲胺甲基上的一个氢原子转移到氨基上,形成分子内质子转移的CH2NH3+离子核心结构模型,水分子作为氢键受体,与质子化氨基NH3+形成氢键. CH3NH2+离子核心结构模型没有CH2NH3+离子核心结构模型稳定. 在团簇的红外光谱中,CH振动、自由NH振动、氢键结合的NH振动和OH振动模式在CH3NH2+和CH2NH3+两种离子核心结构模型的理论计算红外光谱中明显不同,因此可用于鉴别甲胺水合离子团簇的结构模型,有助于理解甲胺和水复合团簇的氢键网络结构.  相似文献   

8.
对Mg2(BH4)2(NH2)2的脱氢机理展开系统的理论研究发现相对于分子内的脱氢过程,分子间的脱氢过程在热力学和动力学方面都是比较有利的. Mg2(BH4)2(NH2)2脱氢过程的第一步是BH4-中的B-Hδ-和NH2-中  相似文献   

9.
本文通过密度泛函理论计算方法探究了α-MoC催化甲醇水蒸气重整(CH3OH+H2O→CO2+3H2)反应,系统地研究了甲醇水蒸气重整反应中相关中间体的吸附行为和基本步骤的动力学. 结果表明,在α-MoC(100)表面,甲醇容易裂解形成CH3O中间体,CH3O进一步脱氢为CH2O. 通过比较CH2O和OH缔合过程和CH2O直接分解过程,发现CH2O和OH之间更容易形成CH2OOH而不是分解成CHO和H. 计算结果表明,CH2OOH中间体的连续脱氢对CO2有很高的选择性. 相反,在α-MoC(111)表面,由于CH2O中间体的强吸附使其更偏向于脱氢生成CHO,最后生成产物CO. 此外,高水解离产生的OH物种可以促进中间体O-H键的断裂,并显著降低反应能垒. 本文不仅揭示了α-MoC(100)晶面在甲醇水蒸气重整反应中的催化作用,也为α-MoC基催化剂的设计提供了理论指导.  相似文献   

10.
利用激光闪光光解技术研究了蒽醌-2-磺酸钠(AQS)在吡啶离子液体N-丁基吡啶四氟硼酸盐([BPy][BF4])与水(H2O)混合体系中的光化学反应过程. 实验结果表明,AQS的激发三重态(3AQS*) 会与H2O快速反应,不断增加[BPy][BF4]在混合体系中的体积比(VIL),瞬态吸收光谱发生了很大变化. 510 nm附近的瞬态吸收带变化最大,在0< VIL< 0.1时,吸光度会随着[BPy][BF4]的增加而增加;而在VIL>0.1时,吸光度则随着比例的增加而减小. 然而380 nm附近吸收带的吸光度却一直在增加. 通过拟合近似地得到了瞬态物种B和3AQS*的表观动力学参数. 另外还讨论了3AQS* 与阳离子之间的夺氢反应,通过对350~420 nm处光谱图的分析,推断出这一范围的瞬态吸收光谱是3AQS*与AQSH·的叠加谱. 在混合体系中,3AQS*分别与H2O和[BPy][BF4]的反应是一对竞争反应. 还发现在高浓度的离子液体环境下,体系的整体反应速率会减弱.  相似文献   

11.

The crystal structure of di-(L-serine) phosphate monohydrate [C3O3NH7]2H3PO4H2O is determined by single-crystal x-ray diffraction. The intensities of x-ray reflections are measured at temperatures of 295 and 203 K. The crystal structure is refined using two sets of intensities. It is established that, in the structure, symmetrically nonequivalent molecules of L-serine occur in two forms, namely, the monoprotonated positively charged molecule CH2(OH)CH(NH3)+COOH and the zwitterion CH2(OH)CH(NH3)+COO?, which are linked with each other and with the H2PO ?4 ion through a hydrogen-bond system involving water molecules.

  相似文献   

12.
The monoammoniate of lithium borohydride (Li(NH3)BH4) is a potential candidate for hydrogen storage owing to its high hydrogen capacity (18 wt%). In this work, electronic structure, bonding characters, and decomposition pathways of Li(NH3)BH4 are investigated from first-principles calculations. We find that NH3 molecules are covalently attached to Li atoms through N atoms and the ionization of Li atoms plays an essential role in stabilizing the compound. A general correlation between the stability of X(NH3)BH4 (X=H,Li,Na,K) and the electronegativities of X atoms is established. The thermal stability of X(NH3)BH4 could be modulated by manipulating the cation electronegativities. Free energy computations indicate that Li(NH3)BH4→LiBH4+NH3 is the most likely thermal decomposition route.  相似文献   

13.
The study of the interaction of a pyramidal tetramer of Cu2Pt2 with the H2 is reported here through ab initio multiconfigurational self-consistent field (MC-SCF) calculations, plus extensive multireference configuration interaction (MR-CI), variational and perturbative calculations. The lowest three electronic states X 1A′, a 3A′ and a 1A′ of the bare cluster were considered in order to study this interaction. For the H2 Cs approaching a Pt vertex, results show that the Cu2Pt2 pyramid cluster in its X 1A′ and a 1A′ states can spontaneously capture and dissociate the H2. For the H2 Cs approaching a Cu vertex, where H2 is located in the Cs reflecting plane, the Cu2Pt2 cluster in its X 1A′ electronic state shows capture of the hydrogen molecule after surmounting an energy barrier; moreover, in this approach the Cu2Pt2 cluster in its a 1A′ electronic state shows spontaneous capture of the hydrogen molecule. For the H2 approaching a Cu vertex, where the Cs reflecting plane bisects the H2 molecule, the Cu2Pt2 cluster in its three lowest-lying states is able to capture the hydrogen molecule after surmounting a small barrier. The Cu2Pt2+H2 Cs face-on interactions show a lower H2 activation than that which was obtained in the equivalent Pt4+H2 interactions.  相似文献   

14.
The interaction between ammonium NH3 and H2O molecules in zeolitic nanopores is studied by in situ 1H nuclear magnetic resonance (NMR) method. The powder and single crystal samples of natural zeolites, heulandites Ca4[Al8Si28O72]·24H2O and clinoptilolite (Na, K,Ca1/2)6[Al6Si30O72], were used as the model system. It is shown that penetration of NH3 into the zeolitic nanopores is accompanied by disordering of the hydrogen sublattice of zeolitic water and by the fast proton exchange NH3 + H2O ? [NH4]+ + [OH]? characterized by correlation frequency v c = ~40 kHz. Another nanoreactor interactions are represented by interaction of [NH4]+ ions with exchangeable Na+ and Ca2+ ions of the zeolitic structure. The slow ionic exchange [NH4]+ → [Na,Ca1/2]+ and binding of [NH4]+ in cationic sites of the framework were visualized by NMR spectroscopy along with stepwise release of (Na,Ca1/2)OH from zeolitic pores to the external surface of zeolite grains.  相似文献   

15.
Abstract

The Fourier transform (FT) infrared and Raman spectra of newberyite, MgHPH4 - 3H2O are studied in the region where the stretching vibrations of the water molecules (protiated and deuterated) and the O-H/O-D stretches of the hydrogenphosphate anions are expected to appear. The O-H stretching vibrations give rise to a complex feature known as the A,B,C trio. Since neither of the maxima found below 3000 cm?1 represents a true band arising from a given fundamental, it is pointless to correlate their frequencies with the observed O…O distances. In the water stretching region, the two bands with highest frequencies undoubtedly correspond to the anti symmetric and symmetric stretch of one type of the water molecules. The stretching vibrations of one of the remaining two types of H2O molecules are clearly uncoupled and the O-H oscillator involved in the weaker hydrogen bond is responsible for a band at 3376 cm?1 whereas the rest of the water stretchings are apparently overlapped yielding the complex band below 3320 cm?1. Thus the situation is again complicated and the correlations between the frequencies and the Ow…O distances are inappropriate. The two bands at highest frequencies (3522 and 3483 cm?1 at RT) exhibit a positive temperature coefficient.

  相似文献   

16.
Surface-enhanced Raman scattering from a silver electrode in solution of 0.1 M LiClO4 in acetonitrile has been analyzed as a function of applied potential. Three ν(O-H) bands associated with the interfacial water and two ν(O-H) bands associated with the OH ion species were observed depending on the electrode potential. The band at 3487 cm−1 is favored at relatively positive potentials and assigned to H2O molecules interacting with the electrode surface via the oxygen atoms. Another band at 3586 cm−1 appears in a wider potential region and is assigned to the H2O molecules with one or both of the hydrogen atoms facing the electrode surface. Additionally, evidence for the possible surface ion pair, Li+OH, which is closely associated with H2O molecules and the quasi-crystalline form of LiOH are also presented in this paper.  相似文献   

17.
The in?uence of the hydrogen bond formation on the nuclear magnetic resonance parameters has been investigated in the case of microhydrated ortho-aminobenzoic acid (o-Abz) in the gas-phase. DFT-B3LYP/aug-cc-pVDZ predicted 1H and 13C isotropic chemical shifts with respect to TMS of the isolated o-Abz are in reasonable agreement with available experimental data. The isotropic and anisotropic chemical shifts for all atoms of o-Abz within the o-Abz?···?(H2O)1-3 complexes have been calculated at the Hartree–Fock, and density functional (B3LYP) theoretical levels using the 6-31++G(2d,2p) and aug-cc-pVDZ basis sets and considering the counterpoise corrections for the basis set superposition errors. The chemical shift values of the carboxyl group atoms of microhydrated o-Abz relative to isolated o-abz do not show significant basis set dependence. Both the hydrogen and carbon atoms constituting the carboxyl group of o-Abz suffer downfield shift due to formation of hydrogen bond with water. The length of hydrogen bond formed between o-Abz and water is found to vary with the number of water molecules present around o-Abz. A direct correlation between the hydrogen bond length and isotropic chemical shift of the bridging hydrogen is observed for both C?=?O?···?H-O and O-H?···?O interactions.  相似文献   

18.
Previous studies have shown that dipole-bound excited states exist for certain small anions. However, valence excited states have been reported for some closed-shell anions, but those with singlet valence excited states have, thus far, contained a single silicon atom. This work uses high-level coupled cluster theory previously shown to reproduce excited state energies to better than 0.1 eV compared with experiment in order to examine the electronic excited state properties of anions containing silicon and other higher main group atoms as well as their first row analogues. Of the 14 anions involved in this study, 9 possess bound excited states of some kind: CH2SN?, C3H?, CCSiH?, CCSH?, CCNH?2, CCPH?2, BH3PH?2, AlH3NH?2 and AlH3PH?2. Two possess clear valence states: CCSiH? and its first row analogue C3H?. Substantial mixing appears to be present in the valence and dipole-bound characters for the first excited state wavefunctions of many of the systems reporting excited states, but the mixing is most pronounced with the ammonia borane-like AlH3NH?2, and AlH3PH?2 anions. Inclusion of second row atoms in anions whose corresponding radical is strongly dipolar increases the likelihood for the existence of excited states of any kind, but among the systems considered to date with this methodology, only the nature of group 14 atoms in small, closed-shell anions has yet been shown to allow valence singlet excited states.  相似文献   

19.
ABSTRACT

Raman spectra of the uranyl-containing mineral coconinoite, Fe2Al2(UO2)2(PO4)4(SO4)(OH)2 · 20H2O, are presented and compared with the mineral's infrared spectra. Bands connected with (UO2)2+, (PO4)3?, (SO4)2?, (OH)?, and H2O stretching and bending vibrations are assigned. Approximate U?O bond lengths in uranyl, (UO2)2+, and O?H…O hydrogen bond lengths are calculated from the wavenumbers of the U?O stretching vibrations and (OH)? and H2O stretching vibrations, respectively, and compared with published data for similar natural and synthetic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号