首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
本文利用红外光解离光谱研究了一价钴阳离子与二氧化碳之间的相互作用. 通过密度泛函理论计算得到[Co(CO2)n]+团簇的几何结构,并且模拟了它们的振动光谱与实验数值进行比较. 研究结果表明,在[Co(CO2)n]+(n=2∽6)团簇中,钴阳离子通过电四极矩静电作用以端点结合的方式与二氧化碳中的氧原子结合在一起. 团簇的红外光谱都集中在二氧化碳反对称伸缩的波数附近,并且随着团簇尺寸的变化出现蓝移,最后把[Co(CO2)n]+的红外光解离光谱与稀有气体贴附的[Co(CO2)n]+-Ar的红外光解离光谱进行了比较.  相似文献   

2.
本文利用量子化学计算方法,研究了甲胺和水复合离子团簇[(CH_3NH_2)(H_2O)_n]~+的几何结构、能量和红外光谱,揭示了结构生长模型、氢键作用机制和质子转移机理.研究结果表明,在[(CH_3NH_2)(H_2O)_n]~+团簇中,甲胺甲基上的一个氢原子转移到氨基上,形成分子内质子转移的CH_2NH_3~+离子核心结构模型,水分子作为氢键受体,与质子化氨基NH_3~+形成氢键.CH_3NH_2~+离子核心结构模型没有CH_2NH_3~+离子核心结构模型稳定.在团簇的红外光谱中,CH振动、自由NH振动、氢键结合的NH振动和OH振动模式在CH_3NH_2~+和CH_2NH_3~+两种离子核心结构模型的理论计算红外光谱中明显不同,因此可用于鉴别甲胺水合离子团簇的结构模型,有助于理解甲胺和水复合团簇的氢键网络结构.  相似文献   

3.
利用团簇模型研究了二氧化碳对质子化甲醇的溶剂化作用.H+(CH3OH)(CO2)n+(n=1~7)的量子化学计算结果表明,需要3个或4个二氧化碳分子完成甲醇的羟基第一溶剂层.除了氢键,二氧化碳分子间的相互作用对大团簇的稳定性也起到了重要的作用.在这些溶剂化作用的早期阶段,不容易发生质子从甲醇到二氧化碳的转移过程.模拟的红外光谱揭示了自由O-H伸缩振动、氢键作用后的O-H伸缩振动、以及二氧化碳的O-C-O伸缩振动频率是研究质子化甲醇溶剂化过程的灵敏探针.  相似文献   

4.
本文利用红外光解离光谱研究了第三族金属氧化物离子对二氧化碳分子的转化机制. 研究表明,对于[ScO(CO2)n]+体系,在n≤4时,形成了溶剂化结构;在n=5时,形成了碳酸盐结构,实现了二氧化碳的转化. 对于[YO(CO2)n]+体系,需要4个二氧化碳分子就可以实现二氧化碳的转化. 而在[YO(CO2)n]+体系中,只发现了溶剂化结构,没有观察到碳酸盐结构. 理论计算表明,[YO(CO2)n]+体系拥有最小的溶剂化结构向碳酸盐结构转化能垒,[LaO(CO2)n]+体系拥有最大的溶剂化结构向碳酸盐结构转化能垒. 本文从分子水平揭示了不同金属氧化物离子对二氧化碳分子转化的影响规律.  相似文献   

5.
利用团簇模型研究了质子化水团簇对乙炔的溶剂化作用. H+(C2H2)(H2O)n (n=1~5)的量子化学计算结果表明,水分子倾向与乙炔的π电子形成新型OH…π氢键作用,并且乙炔的第一溶剂层需要4个水分子来完成. 模拟的红外光谱揭示了OH…π氢键作用后的OH伸缩振动是研究乙炔与水溶剂化过程的灵敏探针. 这些红外光谱可以用红外光解离光谱实验方法测得,将为理解OH…π氢键作用以及质子化水团簇如何溶剂化乙炔提供有力的科学数据.  相似文献   

6.
本文通过离子迁移质谱法研究了氧化钠团簇阳离子(NanOm+,n≤11)的稳定结构. 质谱结果表明化学计量组成Na(Na2O)(n-1)/2+ (n=3、5、7、9和11)系列是稳定的,并且NaO(Na2O)(n-1)/2+ (n=5、7、9和11)系列作为二级稳定系列. 为了获得这些团簇离子的结构,通过离子迁移率测量实验测定离子和氦缓冲气体之间的碰撞截面. 同时计算了这些组合物优化结构的理论碰撞截面. 结果表明,Na(Na2O)(n-1)/2+和NaO(Na2O)(n-1)/2+的结构除了n=9之外,其它具有相似结构框架. Na(Na2O)(n-1)/2+所有的化合键位于钠和氧之间. 另一方面,NaO(Na2O)(n-1)/2+中除了Na-O键之外,还存在一个O-O氧键,表明NaO(Na2O)(n-1)/2+具有过氧化物离子(O22-)作为Na(Na2O)(n-1)/2+的氧化物离子(O2-) 的替代物. Na(Na2O)(n-1)/2+和NaO(Na2O)(n-1)/2+两种稳定系列都是闭壳组合物. 这些闭壳特征对氧化钠簇阳离子的稳定性具有强烈影响.  相似文献   

7.
采用激光溅射法制备了同位素标记的氧化锰团簇正离子Mnm18On+,并研究了其在快速流动反应管中与硫化氢在热碰撞条件下的反应,氧化锰团簇正离子与硫化氢反应前后的质量分布与强度变化由飞行时间质谱仪检测.实验表明,绝大多数氧化锰团簇正离子可与硫化氢发生氧-硫交换反应产生水分子,反应通式为:Mnm18On++H2S→Mnm18On-1S++H218O.通过密度泛函理论计算了氧化锰团簇正离Mn2O2+、Mn2O3+和Mn2O4+与H2S反应的机理,结果显示,在这些反应体系中氧-硫交换反应通道同时具有热力学和动力学优势,印证了实验中观察到的现象.气相团簇研究发现的氧-硫交换反应与相关凝聚相体系反应结果一致  相似文献   

8.
利用脉冲激光溅射-超声分子束载带方法制备了气相Ti+(CO2)2Ar和Ti+(CO2)n(n=3-7)络合物离子.采用红外光解离光谱研究了这些选定的质量离子的振动光谱. 对于每一种络合物离子, 在CO伸缩振动频率范围都观察到了振动峰,表明这些离子具有插入的OTi+CO(CO2)n-1结构. 对于n≦5的OTi+CO(CO2)n-1离子,其CO振动和CO2的反对称伸缩振动频率都比自由的CO和CO2的频率要高,表明CO和CO2配体与中心金属离子之间主要是静电相互作用.实验结果还表明TiO+可以直接络合五个配体(1个CO和4个CO2分子).对于n=2络合物体系,除了插入的OTi+CO(CO2)结构以外,还观察到了具有弯曲结构的OCO-Ti+-OCO异构体的存在  相似文献   

9.
利用飞秒时间分辨光谱,可观测叠加在电子态动力学上的相干振动动力学. 从金团簇的相干振动中,不仅能提取电子与振动的耦合信息,也能得到力学性质和电子结构,进而有望实现微小质量探测等应用. 本文利用飞秒时间分辨的瞬态吸收探测了[Au25(SR)18]-团簇的相干振动动力学,通过对相干振动的频率、相位、波长分布的详细分析进一步揭示了其来源. 在[Au25(SR)18]-团簇的飞秒瞬态吸收动力学中可以观测到频率为40 cm-1和80 cm-1的两种振动,均来源于团簇中心Au13核的振动. 通过对相干振动的相位分析发现频率为80 cm-1的振动来自于对电子态之间吸收频率的调制,而频率为40 cm-1的振动来源于对电子态之间吸收强度的调制. 同时,研究发现[Au25(SR)18]-团簇相干振动的频率对其表面配体不敏感,该振动是来源于Au13核的本征性质.  相似文献   

10.
使用密度泛函理论下的第一性原理方法,对Wn原子团簇(n=3—27)的结构特性进行了理论计算. 得到了Wn团簇(n=3—7)的最低能量结构和(n=8—27)的局域能量极小的典型结构. 使用凝胶模型,提出的电子组态1s21p61d102s21f142p63s  相似文献   

11.
Starting with H+[CH3C(O)CH2C(O)CH3] (denoted H+PD), the protonated diketone-water clusters H+PD(H2O) n (n = 1–3) have been characterized by density functional theory calculations in combination with vibrational predissociation spectroscopy to explore the conformational changes of a protonated bifunctional ion solvated by water in the gas phase. Theoretical calculations for H+PD revealed that the ion contains an intramolecular hydrogen bond (IHB), with two oxygen atoms bridged by the extra proton in an O—H+ … O form. Attachment of one water molecule to it readily ruptures this IHB, replacing the H+ by the H3O+ moiety. Further replacement of the IHB by two water molecules occurs at n = 2 and the ?C(O)CH2C(O)- chain is fully opened (or unfolded) after transfer of the extra proton to the water trimer at n = 3. To verify the computational findings, infrared spectroscopic measurements were performed using a vibrational predissociation ion trap spectrometer to identify cluster isomers from the signatures of hydrogen bonded and non-hydrogen bonded OH stretching spectra of H+PD(H2O)2,3 produced in a corona discharge supersonic expansion. Besides open form isomers, evidence for the formation of water-bridged structures has been found for H+PD(H2O)3 at an estimated temperature of 200 K. A detailed illustration of the unfolding steps as well as the energy profiles for the evolution of a two-water bridge isomer from the protonated H+PD monomer are analysed pictorially (including both stable intermediates and transition states) in the present investigation.  相似文献   

12.
Three novel lanthanide 1-D chain coordination polymers, namely {[Tb(μ2-L)2(η2-NO3)(CH3OH)(H2O)]·0.5CH3OH·0.5H2O}n (1), {[Dy(μ2-L)2(η2-NO3)(CH3OH)(H2O)]·H2O}n (2) and {[Ce(μ2-L)2(η2-NO3)(H2O)3]·H2O}n (3) (HL=N-benzoyl-N′-(4-benzoxy)thiourea), have been prepared and characterized by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction. The luminescence properties and themostabilities of polymers 1-3 have been determined as well.  相似文献   

13.
The solute-solvent interactions of hydrogen-bonded phenol-(H2O)n (n=3-5) clusters in electronic excited states were investigated by means of the time-dependent density functional theory (TDDFT) method. The geometric structures and IR spectra in ground state, S1 state, and T1 state of the clusters, were calculated using the density functional theory (DFT) and TDDFT methods. Only the ring form isomer, the most stable one of the cluster, was considered in this study. Four, five and six intermolecular hydrogen bonds were formed in phenol-(H2O)3, phenol-(H2O)4, and phenol-(H2O)5 clusters, respectively. Based on the analysis of IR spectra, it is revealed that the “window region” between unshifted and shifted absorption bands in both S1 and T1 state becomes broader compared with that in ground state for the corresponding clusters. Furthermore, two interesting phenomenon were observed: (1) with the anticlockwise order of the ring formed by the intermolecular hydrogen bonds in the H-bonded phenol-(H2O)n (n=3-5) clusters, the strengths of the intermolecular hydrogen bonds decrease in all the S0, S1 and T1 states; (2) upon electronic excitation, the smaller the distance between phenol and water is, the larger the change of intermolecular hydrogen bonds strength is. Moreover, the intermolecular hydrogen bond (phenolic OH is the H donor) is strengthened in excited state compared with that in ground state. But the intermolecular hydrogen bond (phenolic OH is the H acceptor) is weakened in excited state.  相似文献   

14.
The possible mechanisms for proton transfer in ammonium aqueous solutions are discussed through ab initio LCAO-MO-SCF calculations for the following hydrogen-bonded complexes : [NH4 + … NH3] ; [NH4 + … OH2] ; [NH4 + … OH2 … OH2] ; [NH4 + … OH2 … NH3] and [H2O … NH4 + … OH2 … OH2]. The energy curve along the reaction coordinate is drawn for the first three systems. A double well potential curve is obtained for the two symmetrical systems with a very low barrier to proton transfer : 2·9 kcal/mole for the system [NH4 + … NH3] and 4·3 kcal/mole for the system [NH4 + … H2O … NH3]. For both systems the exchange mechanism involves three successive steps : association, transfer and dissociation. Solvation may affect the energetics of the first and third steps. For the unsymmetrical system NH4 + + H2O, the energy would increase continuously during the steps of proton transfer and dissociation. Hence the process of proton transfer between an ammonium ion and a water molecule may take place in solution only if assisted either by solvation or by a concerted push-pull mechanism involving a third molecule [NH4 + … OH2 … NH3]. Theoretical results for the systems [NH4 + … OH2 … OH2] and [NH3 … H3O+ … H2O] show, indeed, that solvation should make the proton transfer easier. In any case the proton transfer is found to occur through a contraction of the associated species formed in the first step.  相似文献   

15.
Cs2[AuI X 2][AuIII X 4](X = Cl, Br, and I) is well known for the three-dimensional perovskite-type gold mixed valence system. Recently, layered perovskite-type gold mixed valence complexes, [NH3(CH2) n NH3]2[(AuII2)(AuIIII4)(I3)2] (n = 7 and 8), have been synthesized. We have investigated the relationship between the structural dimensionality and the AuI–AuIII charge transfer interaction for Cs2[AuII2][AuIIII4] and [NH3(CH2) n NH3]2[(AuII2)(AuIIII4)(I3)2] (n = 7 and 8) by means of 197Au Mössbauer spectroscopy.  相似文献   

16.
Density functional theory (DFT)-based relativistic calculations were performed to model the Ru L-edge X-ray absorption near edge structure (XANES) spectra of the hexaammineruthenium complex [Ru(NH3)6]3+ and “blue dimer” water oxidation catalyst, cis,cis- [(bpy)2(H2O)RuIIIORuIII(OH2)(bpy)2]4+ (bpy is 2,2-bipyridine). Two computational approaches were compared: simulations without the core-hole and by modeling of the core-hole within the Z+1 approximation. Good agreement between calculated and experimental XANES spectra is achieved without including the core-hole. Simulations with algorithms beyond the Z+1 approximation were only possible in a framework of the scalar relativistic treatment. Time-dependent DFT (TD-DFT) was used to compute the Ru L-edge spectrum for [Ru(NH3)6]3+ model compound. Three different core-hole treatments were compared in a real-space full multiple scattering XANES modeling within the Green function formalism (implemented in the FEFF9.5 package) for the [Ru(Mebimpy)(bpm)(H2O)]2+ complex. The latter approaches worked well in cases where spin–orbit treatment of relativistic effects is not required.  相似文献   

17.
The structures of proton solvates in the HCl-H2O-(CH3)2NCHO (DMFA) system at H2O: DMFA ratios ranging from 1: 1 to 21: 1 are studied by the IR spectroscopy method. It is demonstrated that H2O?H+?OH2 ions and (CH3)2NCHO?H+?OH2 mixed solvates with a strong quasi-symmetrical hydrogen bond are formed in solutions. With an increase in the DMFA concentration, the fraction of H5O 2 + ions decreases. At HCl: H2O ≥ 1: 3 and arbitrary DMFA concentrations, only mixed proton solvates are formed. The continuous absorption coefficients for the (CH3)2NCHO?H+?OH2 ions are determined. The results obtained are compared with the results of quantum-chemical calculations of the structure and relative stability of the (DMFA) m H+(H2O) n (m = 0–2, n = 0–3) positively charged complexes which were performed by the B3LYP/6-31++G(d,p) DFT method. We identified 19 stable configurations with chain, cyclic, and branched structures. Most of these configurations contain the (CH3)2NCHO?H+?OH2 fragment. The parameters of the O?H+?O bridge show that some configurations have a strong quasi-symmetrical hydrogen bond. In some cases, the proton is located between two DMFA molecules. The H2O?H+?OH2 bridge is observed in none of the stable configurations of the (DMFA) m H+(H2O) n (m ≠ 0) complexes.  相似文献   

18.
Field evaporation of silver and field desorption of silver surface compounds were investigated by analysing positive ions with a mass spectrometer. In particular, the well known adsorption states of oxygen, and further the interactions of H2O, NH3, H2, CO and CH4 were measured in the field ion mass spectrometer under steady state fields of > 0.1 V/Å with a sensitivity of < 0.1 ions s?1 and at temperatures between 80 °K and 425 °K. Although oxygen is usually chemisorbed at Ag surfaces, no AgO+, AgO+2 or other Ag-O compounds could be detected as positive ions, Ag+ and O2+ are the only observed ions at best image fields in oxygen up to fields of field evaporation of Ag+(≈ 2.2 V/Å). Even after the actual adsorption of oxygen with zero-field (6 × 105 Langmuir at 10?3 Torr) at 323 °K and 473 °K and subsequent application of the desorption field at 210°K no silver-oxygen compounds were found in positive ionic form. Small quantities of AgO+ and AgO+2 were only formed — besides Ag(H2O)x+ complexes — if atomic oxygen was supplied by the field induced dissociation of water.Gases which do not adsorb on silver under zero-field conditions (H2, CO, CH4, N2) yield the ions Ag(H2)n, Ag(CO)n+, n=1, 2; AgCH4+, AgN2+. The situation with H2O and NH3 is more complicated: Molecular ions [Ag(H2O)n]+·mH2O, n=1,…, 4, m=1,…, 8 and [Ag(NH3)n]+·mNH3, n=1, 2, m=1,…, 6 are found besides Ag+.From the temperature and field dependence conclusions are drawn about the mechanisms of evaporation and formation of ionic surface complexes. The activation energies of evaporation of Ag+ are found to depend on the square root of the field strength. In general, the generation of surface compounds can be described by field induced reactions rather than usual gas adsorption.  相似文献   

19.
Raman and infrared spectra of the uranyl mineral zellerite, Ca[(UO2)(CO3)2(H2O)2]·3H2O, were measured and tentatively interpreted. U O bond in uranyl and O H···O hydrogen bonds were calculated from the vibrational spectra. The presence of structurally nonequivalent water molecules in the crystal structure of zellerite was inferred. A proposed chemical formula of zellerite is supported. Raman bands at 3514, 3375 and 2945 cm−1and broad infrared bands at 3513, 3396 and 3326 cm−1 are related to the ν OH stretching vibrations of hydrogen‐bonded water molecules. Observed wavenumbers of these vibrations prove that in fact hydrogen bonds participate in the crystal structure of zellerite. The presence of two bands at 1618 and 1681 cm−1 proves structurally distinct and nonequivalent water molecules in the crystal structure of zellerite. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号