首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文通过密度泛函方法计算6H-SiC(0001)表面对氧分子和水分子的吸附. 在6H-SiC(0001)表面上吸附的O2分子自发地解离成O*,并被吸收在C与Si原子之间的空位上. 吸附的H2O自发地分解成OH*和H*,它们都被吸附在Si原子的顶部,OH*进一步可逆地转化为O*和H*. H*可以使Si悬键饱和并改变O*的吸附类型,并进一步稳定6H-SiC(0001)表面并防止其转变为SiO2.  相似文献   

2.
本文介绍了真空紫外光电离质谱结合理论计算研究环戊酮单分子的光电离解离过程. 在9.0∽15.5 eV能量范围内,测量了环戊酮离子及其碎片离子的光电离效率曲线. 通过光电离效率曲线,将环戊酮分子的电离能确定为9.23±0.03 eV,并确认碎片离子为:C5H7O+,C4H5O+,C4H8+,C3H3O+,C4H6+,C2H4O+,C3H6+,C3H5+,C3H4+,C3H3+,C2H5+, C2H4+. 利用量子化学计算方法,在ωB97X-D/6-31+G(d,p)理论水平基础上,提出了C5H8O+的解离机制. 通过对环戊酮解离路径的分析,发现开环和氢迁移过程为环戊酮离子解离的主要路径.  相似文献   

3.
本文利用266 nm波长的激光及程序升温脱附的方法研究了甲醇在ZnO(0001)表面的光催化反应.TPD结果显示部分的CH_3OH以分子的形式吸附在ZnO(0001)表面,而另外一部分在表面发生了解离.实验过程中探测到H_2,CH_3~·,H_2O,CO,CH_2O,CO_2和CH_3OH这些热反应产物.紫外激光照射实验结果表明光照可以促进CH_3OH/CH_3O解离形成CH_2O,在程序升温或光照的过程中它又可以转变为HCOO~-.CH_3OH_(Zn)与OH_(ad)反应在Zn位点上形成H20分子.升温或光照都能促进CH_3O~·转变为CH_3~·.该研究对CH_3OH在ZnO(0001)表面的光催化反应机理提供了一个新的见解.  相似文献   

4.
本文研究了氧化石墨烯负载Pt单原子(Pt1/Gr-O)催化硼胺烷(NH3BH3)全水解反应机理,即一分子的NH3BH3生成三分子的氢气(H2)的过程. 在水解路径中,首先吸附的硼胺烷连续断裂两个B-H键生成第一分子的H2. 接着,一个H2O分子与*BHNH3基团(*表示吸附态)反应生成*BH(H2O)NH3,其中伸长的O-H键断裂后形成*BH(OH)NH3. 然后,第二个H2O与*BH(OH)NH3反应生成*BH(OH)(H2O)NH3,在指向Pt1/Gr-O表面的O-H断裂后,生成BH(OH)2NH3并脱附到水溶液中. 两个水分子脱氢产生的两个H原子脱附生成第二个H2分子,且Pt1/Gr-O催化剂恢复. 脱附后的BH(OH)2NH3在水溶液中水解生成第三个H2分子. 纵观整个水解反应,H2O分子和*BHNH3基团的结合是反应速控步,其反应能垒是16.1 kcal/mol. 因此,Pt1/Gr-O有希望成为室温催化NH3BH3全水解催化剂.  相似文献   

5.
杨春  李言荣  颜其礼  刘永华 《物理学报》2005,54(5):2364-2368
采用基于密度泛函理论的分子动力学方法,对α-Al2O3(0001)表面 Al,O原子空位缺陷及其对ZnO吸附进行了理论计算.电子局域函数显示了表面空位处的电子密度变化,表面Al原子空缺处有非常明显的缺电子区域,悬挂键临近O的电子密度增大,有利于对Zn的吸附;O原子空缺处的Al原子处存在孤立电子,其ELF值为005—03,将有利于同电负性较大的O或O2-结合.通过吸附动力学模拟与体系能量的计算发现,表面缺陷显著增强了表面 的化学吸附,空缺原子处都被吸附原子填补,吸附结合能远大于单晶表面的情况.在Al空缺的表面,由于ZnO的O与表面O形成双键,破坏了α-Al2O3(0001)表面O六 角对称结构,减小了 O的表面扩散,从而不利于规则的ZnO薄膜生长.相反,O的空缺表面,弥补了α-Al2O3(0001)表面O空位缺陷,不影响基片表面O六角对称结构.  相似文献   

6.
本文通过密度泛函理论计算方法探究了α-MoC催化甲醇水蒸气重整(CH3OH+H2O→CO2+3H2)反应,系统地研究了甲醇水蒸气重整反应中相关中间体的吸附行为和基本步骤的动力学. 结果表明,在α-MoC(100)表面,甲醇容易裂解形成CH3O中间体,CH3O进一步脱氢为CH2O. 通过比较CH2O和OH缔合过程和CH2O直接分解过程,发现CH2O和OH之间更容易形成CH2OOH而不是分解成CHO和H. 计算结果表明,CH2OOH中间体的连续脱氢对CO2有很高的选择性. 相反,在α-MoC(111)表面,由于CH2O中间体的强吸附使其更偏向于脱氢生成CHO,最后生成产物CO. 此外,高水解离产生的OH物种可以促进中间体O-H键的断裂,并显著降低反应能垒. 本文不仅揭示了α-MoC(100)晶面在甲醇水蒸气重整反应中的催化作用,也为α-MoC基催化剂的设计提供了理论指导.  相似文献   

7.
本文用激光闪光光解技术研究了光诱导生物醌杜醌激发三重态(3DQ*)和色氨酸(Trp)与酪氨酸(Tyr)在乙腈-水(MeCN-H2O)及乙二醇-水(EG-H2O)均相溶液中的光化学反应,分析了反应的机理,并基于Stern-Volmer方法测量了反应速率常数. 光解DQ体系可以生成3DQ*,3DQ*与Trp、Tyr发生的氢原子转移反应占主导地位. 对于DQ/Trp/MeCN-H2O和DQ/Trp/EG-H2O溶液,3DQ*与Trp反应生成杜醌中性自由基DQH·、以碳为中心的色氨酸中性自由基Trp·/NH和以氮为中心的色氨酸中性自由基Trp/N·. 对于DQ/Tyr/MeCN-H2O和DQ/Tyr/EG-H2O溶液,3DQ*与Tyr反应生成DQH·和酪氨酸中性自由基Tyr/O·. 3DQ*与Trp、Tyr的氢原子转移反应速率常数都在109 L·mol-1·s-1量级,反应近似受扩散控制. MeCN/H2O均相溶液中3DQ*与Trp、Tyr的反应速率常数要明显高于EG/H2O均相溶液中的反应速率常数,这与Stokes-Einstein方程定性一致.  相似文献   

8.
利用CBS-QB3理论计算方法研究了异戊二烯的可能解离通道.获得了主要碎片离子C5H7+,C5H5+,C4H5+,C3H6+,C3H5+,C3H4+,C3H3+的C2H3+的结构以及这些解离通道的解离能,并给出了相应的过渡态和中间体的结构和位垒.得到的异戊二烯电离势及主要碎片离子的出现势均与实验值符合的较好.最后,通过理论和实验结果的对比讨论了各通道的解离机理.  相似文献   

9.
利用X-射线光电子能谱(XPS)和程序升温脱附谱(TPD)研究了三甲基镓在Pd(111)表面的吸附和解离行为,并考察了表面预吸附H和O的影响。结果表明,在吸附温度为140 K时,三甲基镓在Pd(111)上主要为解离吸附,此时表面物种为Ga(CH3xx=1,2,3)和CHx物种。加热将导致Ga的甲基化合物中的Ga-C键发生分步断裂,在不同温度下产生CH4和H2从表面脱附。同时,XPS结果证实了在275~325 K的温度区间内存在Ga甲基化合物的分子脱附。退火至更高温度,表面只观察到积碳和金属Ga物种,这二者随着温度的继续升高逐渐向体相扩散。在Pd(111)表面预吸附O和H对上述吸附和解离行为存在显著的影响。当表面预吸附H时,脱附产物CH4和H2的脱附主要位于315 K,可归属为一甲基镓的解离脱附。当表面预吸附O时,只在258 K观察到CH4和H2的脱附峰,可能来自于Pd-O-Ga(CH32吸附结构的解离.  相似文献   

10.
本文系统研究了臭氧修饰对(001)主导晶面锐钛矿型TiO2光催化剂降解甲苯性能的影响. 利用自行搭建的光催化VOCs降解装置对催化剂光降解甲苯的性能进行了测试. 通过多种表征手段,结合原位DRIFTS和DFT计算研究了臭氧表面修饰及甲苯吸附和降解机理. 结果表明,用臭氧进行表面修饰可以显著提高(001)主导晶面TiO2光催化降解甲苯的性能. (001)晶面上丰富的5c-Ti不饱和配位是臭氧分子的吸附位点,其解离后形成的Ti-O键与H2O分子结合,在表面生成大量孤立的Ti5c-OH. Ti5c-OH 是甲苯分子的吸附位,它的形成显著提高了对甲苯分子的吸附能力. 在光照下Ti5c-OH与光生空穴结合能形成·OH自由基. 通过臭氧解离产生的O2也可以与光生电子结合形成超氧自由基. 这些具有强氧化性活性自由基的形成促进了对气相甲苯的光催化降解速率.  相似文献   

11.
The temporal variation of chemiluminescence emission from OH?(A2 Σ +) and CH?(A2 Δ) in reacting Ar-diluted H2/O2/CH4, C2H2/O2 and C2H2/N2O mixtures was studied in a shock tube for a wide temperature range at atmospheric pressures and various equivalence ratios. Time-resolved emission measurements were used to evaluate the relative importance of different reaction pathways. The main formation channel for OH? in hydrocarbon combustion was studied with CH4 as benchmark fuel. Three reaction pathways leading to CH? were studied with C2H2 as fuel. Based on well-validated ground-state chemistry models from literature, sub-mechanisms for OH? and CH? were developed. For the main OH?-forming reaction CH+O2=OH?+CO, a rate coefficient of k 2=(8.0±2.6)×1010 cm3?mol?1?s?1 was determined. For CH? formation, best agreement was achieved when incorporating reactions C2+OH=CH?+CO (k 5=2.0×1014 cm3?mol?1?s?1) and C2H+O=CH?+CO (k 6=3.6×1012exp(?10.9 kJ?mol?1/RT) cm3?mol?1?s?1) and neglecting the C2H+O2=CH?+CO2 reaction.  相似文献   

12.
The addition reaction of CH2OO + H2O CH2(OH)OOH without and with X (X = H2CO3, CH3COOH and HCOOH) and H2O was studied at CCSD(T)/6-311+ G(3df,2dp)//B3LYP/6-311+G(2d,2p) level of theory. Our results show that X can catalyse CH2OO + H2O → CH2(OH)OOH reaction both by increasing the number of rings, and by adding the size of the ring in which ring enlargement by COOH moiety of X inserting into CH2OO···H2O is favourable one. Water-assisted CH2OO + H2O → CH2(OH)OOH can occur by H2O moiety of (H2O)2 or the whole (H2O)2 forming cyclic structure with CH2OO, where the latter form is more favourable. Because the concentration of H2CO3 is unknown, the influence of CH3COOH, HCOOH and H2O were calculated within 0–30 km altitude of the Earth's atmosphere. The results calculated within 0–5 km altitude show that H2O and HCOOH have obvious effect on enhancing the rate with the enhancement factors are, respectively, 62.47%–77.26% and 0.04%–1.76%. Within 5–30 km altitude, HCOOH has obvious effect on enhancing the title rate with the enhancement factor of 2.69%–98.28%. However, compared with the reaction of CH2OO + HCOOH, the rate of CH2OO···H2O + HCOOH is much slower.  相似文献   

13.
The adsorption and reaction of water on clean and oxygen covered Ag(110) surfaces has been studied with high resolution electron energy loss (EELS), temperature programmed desorption (TPD), and X-ray photoelectron (XPS) spectroscopy. Non-dissociative adsorption of water was observed on both surfaces at 100 K. The vibrational spectra of these adsorbates at 100 K compared favorably to infrared absorption spectra of ice Ih. Both surfaces exhibited a desorption state at 170 K representative of multilayer H2O desorption. Desorption states due to hydrogen-bonded and non-hydrogen-bonded water molecules at 200 and 240 K, respectively, were observed from the surface predosed with oxygen. EEL spectra of the 240 K state showed features at 550 and 840 cm?1 which were assigned to restricted rotations of the adsorbed molecule. The reaction of adsorbed H2O with pre-adsorbed oxygen to produce adsorbed hydroxyl groups was observed by EELS in the temperature range 205 to 255 K. The adsorbed hydroxyl groups recombined at 320 K to yield both a TPD water peak at 320 K and adsorbed atomic oxygen. XPS results indicated that water reacted completely with adsorbed oxygen to form OH with no residual atomic oxygen. Solvation between hydrogen-bonded H2O molecules and hydroxyl groups is proposed to account for the results of this work and earlier work showing complete isotopic exchange between H216O(a) and 18O(a).  相似文献   

14.
The chemiluminescence originating from OH1, the excited hydroxyl radical, is one of the most extensively used diagnostics to characterize auto-ignition delay time of gaseous mixtures behind reflected shock waves. We have carried out new experiments and modeling of this diagnostic as well as analyzed previous results for hydrogen-based mixtures, including H2–O2, H2O2–H2O, H2–N2O and H2–O2–N2O. The experiments were analyzed with a detailed chemical reaction model which included mechanisms for OH1 creation, quenching and emission. Simulations of the reaction behind reflected shock waves were used to predict OH1 emission profiles and compare this with measured results as well as profiles of temperature and the ground state concentrations of OH. Analysis of OH1 rates of progress demonstrates that a quasi-steady state approximation is applicable and an algebraic model for OH1 concentrations can be derived that relates emission to the product of concentrations of O and H for H2–O2 and H2O2 mixtures and an additional contribution by the product of H and N2O when N2O is an oxidizer.  相似文献   

15.
We have investigated the photoinduced decomposition of formaldehyde (CH2O) on a rutile TiO2(100)-(1×1) surface at 355 nm using temperature-programmed desorption. Products, formate (HCOO-), methyl radical (CH3·), ethylene (C2H4), and methanol (CH3OH) have been detected. The initial step in the decomposition of CH2O on the rutile TiO2(100)-(1×1) surface is the formation of a dioxymethylene intermediate in which the carbonyl O atom of CH2O is bound to a Ti atom at the five-fold-coordinated Ti4+ (Ti5c) site and its carbonyl C atom bound to a nearby bridge-bonded oxygen (Ob) atom, respectively. During 355 nm irradiation, the dioxymethylene intermediate can transfer an H atom to the Ob atom, thus forming HCOO- directly, which is considered as the main reaction channel. In addition, the dioxymethylene intermediate can also transfer methylene to the Ob row and break the C-O bond, thus leaving the original carbonyl O atom at the Ti5c site. After the transfer of methylene, several pathways to products are available. Thus, we have found that Ob atoms are intimately involved in the photoinduced decomposition of CH2O on the rutile TiO2(100)-(1×1) surface.  相似文献   

16.
The adsorption of H2O on Al(111) has been studied by ESDIAD (electron stimulated desorption ion angular distributions), LEED (low energy electron diffraction), AES (Auger electron spectroscopy) and thermal desorption in the temperature range 80–700 K. At 80 K, H2O is adsorbed predominantly in molecular form, and the ESDIAD patterns indicate that bonding occurs through the O atom, with the molecular axis tilted away from the surface normal. Some of the H2O adsorbed at 80 K on clean Al(111) can be desorbed in molecular form, but a considerable fraction dissociates upon heating into OHads and hydrogen, which leaves the surface as H2. Following adsorption of H2O onto oxygen-precovered Al(111), additional OHads is formed upon heating (perhaps via a hydrogen abstraction reaction), and H2 desorbs at temperatures considerably higher than that seen for H2O on clean Al(111). The general behavior of H2O adsorption on clean and oxygen-precovered Al(111) (θO ? monolayer) is rather similar at low temperature, but much higher reactivity for dissociative adsorption of H2O to form OH adsis noted on the oxygen-dosed surface around room temperature.  相似文献   

17.
The chemisorption, condensation, desorption, and decomposition of methanol, both CH3OH and CH3OD, on a clean Ni(110) surface have been characterized using high resolution electron energy loss spectroscopy, temperature programmed reaction spectroscopy, and low energy electron diffraction. The vibrational spectrum of the saturated chemisorbed layer, 7.4 × 1014 molecules cm?2, is almost identical to the infrared spectrum of liquid or solid methanol. Condensation of multilayers of methanol is facile at 80 K. The only quasi-stable intermediate isolated during the decomposition is a methoxy species, CH3O, which decomposes thermally to CO and H. The evolution of both CO and H2 occurs in desorption limited processes.  相似文献   

18.
Proton transfer in water–hydroxyl mixed overlayers on a Pt(1 1 1) surface was studied by a combination of laser induced thermal desorption (LITD) method and spatially-resolved X-ray photoelectron spectroscopy (micro-XPS). The modulated pattern OH + H2O/H2O/OH + H2O was initially prepared by the LITD method; vacant area with a 400 μm width was first formed in the mixed OH + H2O overlayer by irradiation of focused laser pulses, and followed by refilling the vacant area with pure H2O. Spatial distribution changes of OH and H2O were measured as a function of time with the micro-XPS technique, which indicated that H2O molecules in the central region flow into the OH + H2O region. From quantitative analyses using a diffusion equation, we found that the proton transfer in the mixed overlayer consists of at least two pathways: direct proton transfer from H2O to OH in the nearest site and the proton transfer to the next-nearest site via H3O+ formation. The time scale of first and second path was estimated to be 5.2 ± 0.9 ns and 48 ± 12 ns at 140 K, respectively. In the presence of water capping layer, however, the rate of proton transfer is reduced by an order of magnitude, which would be explained by peripatetic behavior of proton into H2O capping layer.  相似文献   

19.
Reactions of ·OH/O .? radicals and H‐atoms as well as specific oxidants such as Cl2.? and N3· radicals have been studied with 2‐ and 3‐hydroxybenzyl alcohols (2‐ and 3‐HBA) at various pH using pulse radiolysis technique. At pH 6.8, ·OH radicals were found to react quite fast with both the HBAs (k = 7.8 × 109 dm3 mol?1 s?1 with 2‐HBA and 2 × 109 dm3 mol?1 s?1 with 3‐HBA) mainly by adduct formation and to a minor extent by H‐abstraction from ? CH2OH groups. ·OH‐(HBA) adduct were found to undergo decay to give phenoxyl type radicals in a pH dependent way and it was also very much dependent on buffer‐ion concentrations. It was seen that ·OH‐(2‐HBA) and ·OH‐(3‐HBA) adducts react with HPO42? ions (k = 2.1 × 107 and 2.8 × 107 dm3 mol?1 s?1 at pH 6.8, respectively) giving the phenoxyl type radicals of HBAs. At the same time, this reaction is very much hindered in the presence of H2PO ions indicating the role of phosphate ion concentration in determining the reaction pathway of ·OH adduct decay to final stable product. In the acidic region adducts were found to react with H+ ions. At pH 1, reaction of ·OH radicals with HBAs gave exclusively phenoxyl type radicals. Proportion of the reducing radicals formed by H‐abstraction pathway in ·OH/O .? reactions with HBAs was determined following electron transfer to methyl viologen. H‐atom abstraction is the major pathway in O .? reaction with HBAs compared to ·OH radical reaction. H‐atom reaction with 2‐ and 3‐HBA gave transient species which were found to transfer electron to methyl viologen quantitatively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Yuhai Hu 《Surface science》2007,601(21):5002-5009
The influence of pre-dosed O2 on the catalytic reduction of NO with 13C2H5OH on the surface of stepped Pt(3 3 2) was investigated using Fourier transform infra red reflection-absorption spectroscopy (FTIR-RAS) and thermal desorption spectroscopy (TDS). We show that the oxidation of 13C2H5OH with O2 is a very effective reaction, occurring at 150 K and giving rise to acetate. The presence of NO does not lead to any evident oxidation of 13C2H5OH irrespective of the annealing temperature. For the case of O2 + 13C2H5OH + NO co-adlayers, oxidation of 13C2H5OH also takes place at 150 K. However, no new surface species that are supposed to be an intermediate for the production of N2 are detected.The influence of O2 on the production and desorption of N2 is intimately related to both O2 and 13C2H5OH coverage. The presence of pre-dosed O2 does not greatly promote N2 desorption. In fact, N2 desorption is suppressed quantitatively with increasing O2 coverage, after which unreacted, or left-over O atoms appear and remain on steps. It is concluded that the presence of pre-dosed O2 does not play a role of activating reactants in the catalytic reduction of NO with 13C2H5OH on the surface of Pt(3 3 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号