首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Fluoropolymer poly-vinylidene-fluoride modified TiO2 (PVDF/TiO2) were prepared via a simple chemisorption approach and characterized by thermo gravimetric analyse, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and photoluminescence spectra. The modified mechanism and the photocatalytic selectivity of the PVDF/TiO2 were studied. The existence of Ti-F coordination bond on the interface between TiO2 and PVDF was confirmed. For the PVDF modification, the photocatalytic degradation (PCD) of cationic dye was greatly enhanced, and the PCD of anionic dye was obviously inhibited. PVDF/TiO2 shows high photocatalytic selectivity than that of TiO2 by degrading mixed solution of cationic dyes MB and anionic dyes MO. The selectivity can be tuned by changing the PVDF modification amount.  相似文献   

2.
In the current research, various conventional chemical preparation methods without ultrasound aid (precipitation, microwave, and hydrothermal) were compared with sonochemical procedure and were performed for providing of PrVO4 nanostructures using Schiff-base ligands. The small size products with monodisperse particles (~39 nm) optimized by sonochemical fabrication method and using H2 acacpn ligand via ultrasonic probe with power of 60 W and frequency of 18 KHz. The produced PrVO4 nanostructures applied for degradation of diverse organic dyes through the photocatalytic process. Dye types, pH adjusting of dye, dosage of catalyst, synthesis method of nanoparticles and light source as impressive factors inquired for dye removal ability. The outcomes presented the removal efficiency of Eriochorom Black T in optimal conditions of pH = 11 and the catalysts amounts of PrVO4 were adjusted to be 0.05 g. The PrVO4 photocatalyst shows high removal efficiency (ca 86.92 and 89.61%) after 90 min of operation under UV light. The best-obtained framework confirmed the basic study to compare different method in order to acquire suitable catalyst materials. The simple, fast and economic strategy for synthesis PrVO4 with high photodegradation efficiency is sonochemical method against other ways, and it could be extended to the most efficient catalyst materials for water treatment. Consequently, the PrVO4 may suggestion a hopeful avenue for designing the novel generation, low-cost and outstanding potential photocatalyst materials for water treatment.  相似文献   

3.
Particular TiO2 nanoparticles with high selective photocatalytic oxidation of anionic dyes are prepared by a feasible hydrothermal method. Moreover, its photocatalytic selectivity can be easily switched to cationic dyes by a simple post-treatment in ammonia solution, which makes the prepared TiO2 have bi-directional selectivity in dye photodegradation. Based on the photocatalytic performances and the structure and surface characteristics of the catalyst, the bi-directional selectivity of the catalysts is found to be closely related to the adsorption selectivity. The adsorption selectivity originates from surface charge groups, which are introduced during the preparation and post-treatment progresses. This study provides a facile and economical approach towards selective degradation of dyes with high efficiency by the special TiO2 nanoparticles synthesized through a simple hydrothermal method, which may be used practically in the future.  相似文献   

4.
MgTi2O5 (magnesium dititanate) nanoparticles were prepared by a simple hydrothermal assisted post-annealing method and characterized with various analytical techniques. The catalytic properties (sonocatalytic, photocatalytic and sonophotocatalytic activity) were evaluated using the degradation of triphenylmethane dyes (crystal violet, basic fuchsin, and acid fuchsin). The sonophotocatalytic activity of MgTi2O5 nanoparticles towards crystal violet was found to be ~2.9 times higher than the photocatalytic activity and ~20 times higher than that of the sonocatalytic processes. In addition, the sonophotocatalytic efficiency of MgTi2O5 nanoparticles was found to be remarkable for the degradation of basic fuchsin (cationic dye) and acid fuchsin (anionic dye). The mechanism of these catalytic activities has been discussed in detail.  相似文献   

5.
MXene, a new family of two dimensional materials, was utilized as a sonocatalyst in an ultrasonic treatment (US) process for removal of methylene blue (MB) and acid blue 80 (AB). The physico-chemical properties of MXene were characterized using scanning electron microscopy, transmission electron microscopy, porosimetry, and a zeta potential analyzer. Degradation of dyes by US was systemically investigated under several experimental conditions including: power density of US (45, 90, 135, and 180 W L−1), frequency of US (28 and 970 kHz), pH of dye solution (3.5, 7, and 10.5), solution temperature (293, 303, and 313 K), and addition of hydroxyl radical promotor (H2O2) and scavenger (t-BuOH) to concentrations of 25 mM. Based on the experimental results, the quantity of H2O2, which was used as an indicator of hydroxyl radical concentration, was an important factor in determining the degradation rate of MB and AB in this US study. Additionally, synergetic indices for removal of both dyes were higher than 1.0 in all cases, indicating the outstanding efficiency of MXene as a sonocatalyst in the US reactor for removal of both, due to an increase in both (i) the quantity of H2O2 in the US reactor and (ii) active sites for adsorbates from dispersion effects. A stability test on MXene in the US process was conducted using X-ray diffraction and five-cycle recycling performance tests. Based on our experimental data, MXene can be utilized as a sonocatalyst in the US process for a high removal rate for dyes (e.g., MB).  相似文献   

6.
Radioluminescence and thermally stimulated luminescence measurements on Lu2O3, Lu2SiO5 (LSO) and Lu2SiO5:Ce3+ (LSO:Ce) reveal the presence of intrinsic ultraviolet luminescence bands. Characteristic emission with maximum at 256 nm occurs in each specimen and is attributed to radiative recombination of self-trapped excitons. Thermal quenching of this band obeys the Mott-Seitz relation yielding quenching energies 24, 38 and 13 meV for Lu2O3, LSO and LSO:Ce, respectively. A second intrinsic band appears at 315 nm in LSO and LSO:Ce, and at 368 nm in Lu2O3. Quenching curves for these bands show an initial increase in peak intensity followed by a decrease. Similarity in spectral peak position and quenching behavior indicate that this band has a common origin in each of the samples and is attributed to radiative recombination of self-trapped holes, in agreement with previous work on similar specimens. Comparison of glow curves and emission spectra show that the lowest temperature glow peaks in each specimen are associated with thermal decay of self-trapped excitons and self-trapped holes. Interplay between the intrinsic defects and extrinsic Ce3+ emission in LSO:Ce is strongly indicated.  相似文献   

7.
Two Ce3+-doped scintillator crystals, LSO (Lu2SiO5:Ce) and LPS (Lu2Si2O7:Ce), are studied by EPR spectroscopy. The analysis indicates that Ce3+ substitutes for Lu3+ ion in a C2-symmetry site for LPS and in two C1-symmetry sites for LSO, with a preference for the largest one, with 6+1 oxygen neighbors. Angular dependence of the EPR spectrum shows that the electronic ground state of Ce3+ is different in these two matrices. It is mainly composed of |MJ|=5/2 state in LPS and |MJ|=3/2 state in LSO. The temperature dependence of the linewidth shows a noticeably long spin lattice relaxation time, especially in LPS, which is the result of a stronger crystal field in LPS than in LSO.  相似文献   

8.
MnO2 nanoparticles and its nanocomposite with nitrogen-doped graphene (NG) have been fabricated via simple hydrothermal synthesis procedure using water as a solvent. X-ray diffraction (XRD) analysis of the as-prepared samples was used to ascertain the phase purity and crystallite size. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were employed to study the surface features and particle size of the synthesised samples. The photocatalytic ability of the methyl orange (MO) dye with bare MnO2 and its hybrid with nitrogen-doped graphene (NG-MnO2) wer compared with visible light prompted degradation of the dye in absence of these catalysts. The prepared nanohybrid (NG-MnO2) showed improved photocatalytic efficacy as compared to the pure MnO2 nanoparticles. The strong ferromagnetic character of nanohybrid helps in easy separation of catalyst even with a bar magnet.  相似文献   

9.
Herein, nanosheets of g-C3N4 (CN), prepared using a green ultrasonication process under various conditions, were combined with Ag/black TiO2 nanocomposites (AgBT) to create two-dimensional (2D) CN/Ag/black TiO2 tri-composites (CNAgBT). The thickness of the CN sheets varied with the ultrasonication conditions. The CNAgBT sample prepared using ultrasound-treated CN exhibited the highest average photocatalytic efficiencies for the degradation of two model pollutants, followed in decreasing order by AgBT, black TiO2 (BT), sheet CN, bulk CN, and TiO2. The order of pollutant degradation efficiencies by the photocatalysts was consistent with that of the charge carrier separation efficiencies. The degradation efficiency of the CNAgBT increased as the CN-to-AgBT ratio increased from 0.05 to 0.1, but decreased gradually for higher ratios between 0.15 and 0.20, indicating a lower optimal CN-to-AgBT ratio. A plausible photocatalytic degradation mechanism for the CNAgBT nanocomposites was proposed. Additionally, CNAgBT with a CN-to-AgBT ratio of 0.1 displayed a higher hydrogen generation rate with a maximum value of 21.5 mmol g−1 over 5 h than those of the AgBT and BT. Overall, the CNAgBT prepared using ultrasonication-treated CNs showed enhanced photocatalytic performance for both pollutant degradation and hydrogen generation.  相似文献   

10.
TiO2 and ZrO2 nanocrystals were successfully synthesized and deposited onto wool fibers using the sol-gel technique at low temperature. The photocatalytic activities of TiO2-coated and ZrO2-coated wool fibers were measured by studying photodegradation of methylene blue and eosin yellowish dyes. The initial and the treated samples were characterized by several techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and X-ray diffraction. The TEM study shows dispersed particles with 10-30 nm in size for TiO2-coated and 20-40 nm in size for ZrO2-coated samples on the fiber surface. Comparison of the photocatalytic activity of the coated samples reveals superiority of TiO2 modified sample with respect to that of ZrO2 for degradation of both dyes. Our observations indicate that by applying this technique to the fabrics, self-cleaning materials could be designed for practical application.  相似文献   

11.
Polyoxometalates (POM) supported on zirconia, H3PW12O40/ZrO2, were prepared by incorporating polyphosphotungstate into a zirconia matrix via sol-gel technique that involving the hydrolysis of zirconium (IV) n-butoxide, Zr (n-OBu)4, as the ZrO2 source. This insoluble and readily separable catalyst was characterized by using XRD, FT-IR, SEM, and UV diffuse reflectance spectroscopy (UV-DRS), indicating that the polyphosphotungstate was chemically attached to the zirconia supports, and primary Keggin structure remained intact. The photocatalytic and sonocatalytic activity of the supported polyphosphotungstate was tested via degradation of different dyes in aqueous solutions. The POM-ZrO2 nanocomposite showed higher photocatalytic and sonocatalytic activity than pure polyoxometalate or pure ZrO2.  相似文献   

12.
The formation of nanostructures that consist of complexes of β-diketones with 1,10-phenanthroline and involve dyes of the polymethine, triphenylmethane, oxazine, and xanthene series is observed in aqueous solutions. It is found that nanostructures of complexes of Ln(III) ions and dyes are reliably observed at concentrations of Ln complexes from 0.5 to 5 μM and at dye concentrations above 5 nM. Nanostructures of complexes Eu(MBTA)3phen, Eu(NTA)3phen, Eu(PTA)3phen, Tb(PTA)3phen, Gd(MBTA)3phen, and Lu(MBTA)3phen with dyes are studied, where MBTA is n-methoxybenzoyltrifluoroacetone, NTA is naphthoyltrifluoroacetone, PTA is pivaloyltrifluoroacetone, and phen is 1,10-phenanthroline. It is shown that nanostructures formed can contain dye molecules not only inside a nanostructure of Ln complexes but also on its outer shell. It is proved that, at a dye concentration in the solution of the order of nanomole or higher, the formation of mixed nanostructures of Eu complexes and dyes whose S 1 level is below the 5 D 0 level of Eu(III) leads to the quenching of the luminescence of Eu(III) and gives rise to the sensitized luminescence of dyes. The energy transfer efficiency from Eu(III) ions to dye molecules is determined by the ability of these molecules to incorporate into nanostructures of Eu complexes. The effect of the formation of nanostructures on the shape and position of the spectra of luminescence and absorption of dyes is studied. Comparison of the sensitized luminescence intensities of Nile blue in structures of Eu, Lu, and Gd complexes shows that the greater part of the excitation energy of Eu complexes is transferred directly from ions to dye molecules according to the inductive-resonance energy transfer mechanism rather than by means of energy migration over singlet levels of organic ligands in complexes of a nanostructure.  相似文献   

13.
Curcumin was coated on P25 TiO2 by using impregnation method from freshly prepared curcumin solution. The resulting products (Cur–TiO2–P25) was studied by several techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier-transformed infrared spectroscopy, specific surface area by the Brunauer–Emmett–Teller method, and UV–Vis diffused reflectance spectroscopy. Experimental results revealed that impregnation of curcumin at 0.5, 3, 5, and 7 wt% did not affect the native phase of anatase and rutile in P25 significantly, however, it caused red shift of absorption onset in all curcumin-coated samples. The Cur–TiO2–P25 showed enhanced adsorption efficiency and increased photocatalytic activity under visible light with optimal result at 5 wt% curcumin content. Commercial anatase and rutile coated with curcumin (Cur–TiO2–an and Cur–TiO2–ru) were also prepared by the same method for the use in comparative studies of photodegradation of dyes. Cur–TiO2–an and Cur–TiO2–ru were also characterized with some selected equipment above but not as extensively as the Cur–TiO2–P25. Curcumin coating helped improve photocatalytic efficiencies of P25 and anatase but not for rutile. The mechanism of photocatalytic reaction was proposed that under visible light irradiation, curcumin molecule could act as dye sensitizing agent that injected electron into the conduction band of TiO2 leading to photodegradation of dyes.  相似文献   

14.
15.
In this study, new nanoscale photocatalyst based on silver and CNTs/TiO2 was successfully prepared by photoreduction method. The prepared Ag-CNTs/TiO2 was characterized by TEM, XRD and XPS. The photocatalytic activity was also evaluated by photocatalytic degradation of Reactive Brilliant Red X-3B dye. The results indicated that the photocatalytic efficiency of CNTs/TiO2 increased in the presence of Ag nanoparticles and the photocatalysis reaction followed a first order kinetics. The kinetic constant of Ag-CNTs/TiO2 for dye degradation was nearly 1.2 times than that of CNTs/TiO2, which indicated decorating Ag nanoparticles on CNTs/TiO2 could enhance the photocatalytic ability.  相似文献   

16.
Photocatalysis, electrolysis, water jet cavitation (WJC), alone and in combinations were applied to degrade an azo dye, Reactive Brilliant Red X-3B (X-3B). Experiments were conducted in a 4.0 L aqueous solution with different initial dye concentrations, TiO2 dose, and solution pH. WJC substantially increased the photocatalytic, electrolytic and photocatalytic–electrolytic rates of the dye removal. The observed first-order rate of X-3B decolorization in the process of combined photocatalysis and electrolysis coupled with WJC was 1.6–2.9 times of that in the process of combined photocatalysis and electrolysis coupled with mechanical stirring. The rate enhancements may be attributed primarily to the reduced diffusion layer thickness on the electrodes and the deagglomeration of photocatalyst particles due to the chemical and physical effects of WJC. Under the conditions of 80 mg/L X-3B solution, 100 mg/L TiO2 dose and solution pH 6.3, 97% and 71% of color and chemical oxygen demand (CODCr) were removed, respectively, within 90-min photocatalytic–electrolytic treatment coupled with WJC. During this process, azo groups and naphthalene, benzene and triazine structures of the dye can be destroyed. Industrial textile effluent was also investigated, and a positive synergistic effect between photocatalytic–electrolytic system and WJC was observed considering color removal.  相似文献   

17.
Catalytically active graphene-based hollow TiO2 composites(TiO2/RGO) were successfully synthesized via the solvothermal method. Hollow TiO2 microspheres are uniformly dispersed on RGO. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) were used for the characterization of prepared photocatalysts. The mass of GO was optimized in the photocatalytic removal of rhodamine B (RhB) as a model dye pollutants. The results showed that graphene-based hollow TiO2 composites exhibit a significantly enhanced photocatalytic activity in degradation of RhB under either UV or visible light irradiation. The formation of the graphene-based hollow TiO2 composites and the photocatalytic mechanisms under UV and visible light were also discussed.  相似文献   

18.
A novel and simple method for preparing F-doped anatase TiO2 (defined as FTO) film with high photocatalytic activity was developed using titanium-n-butoxide and NH4F as TiO2 and fluorine precursors under mild condition, i.e. low temperature (lower than 373 K) and ambient pressure. The prepared samples were characterized by XRD, SEM, X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectrum (DRS), photoluminescence spectrum (PL) and TG-DSC analysis. The photocatalytic activity was evaluated by decomposing X-3B under artificial solar light. The results showed that the crystallinity of TiO2 was improved by F-doping. F ions can prevent the grain growth, and the transformation of anatase to rutile phase was also inhibited. The doped fluorine atoms existed in two chemical forms, and the ones incorporated into TiO2 lattice might take a positive role in photocatalysis. Compared with surface fluorination samples, FTO film exhibited better photocatalytic activity. The high photocatalytic activity of FTO may due to extrinsic absorption through the creation of oxygen vacancies rather than the excitation of the intrinsic absorption band of bulk TiO2. Furthermore, the FTO can be recycled with little photocatalytic activity depression. Without any further treatment besides rinsing, after 6 recycle utilization, the photocatalytic activity of FTO film was still higher than 79%.  相似文献   

19.
Spectroscopic and kinetics properties of Lu2SiO5:Dy3+ (LSO:Dy) single crystal with 1 and 5 at.% of activator were investigated. The polarised absorption and unpolarised emission spectra were measured at 10–300 K. Parameters characterising radiative relaxations of LSO:Dy were estimated by the Judd–Ofelt model. The crystal-field energy structure was derived from low-temperature optical spectra exhibiting the presence of two non-equivalent Dy3+ sites. It was found that dysprosium ions in site 1 and in site 2 do not form isolated subsystems; these subsystems are coupled by an effective spectral energy migration process. The LSO:Dy crystal exhibits a strong luminescence in the visible. Strong ion–ion interactions were observed for LSO:Dy (5 at.%); luminescence decays are non-exponential and the macro-parameter of donor–acceptor interaction C da amounts to 5.3 (10?52 m6?s?1) and 7.8 (10?52 m6?s?1) at 10 and 300 K, respectively. Laser potential related to the 4F9/26H13/2 yellow luminescence in Dy:LSO was assessed based on evaluation of the emission cross section values. It was concluded that the crystal is a promising material for visible laser operation.  相似文献   

20.
Tb3+-doped lutetium oxyorthosilicate (Tb:Lu2SiO5, LSO) films have been successfully fabricated on carefully cleaned silicon (1 1 1) substrates by Pechini sol–gel method combined with the spin-coating technique. X-ray diffraction (XRD), photoluminescence (PL) spectra and atomic force microscopy (AFM) were employed to characterize the resultant films. XRD patterns indicated that the films were crystallized into A-type LSO phase at 1000 °C, followed by a phase transition from A-type LSO to B-type LSO occurred at 1100 °C. The AFM observation revealed that the phosphor films were uniform and crack-free, consisting of closely packed grains with an average size of 200–300 nm. The PL spectra showed the characteristic emission 5D47FJ (J = 3–6) for Tb3+, The lifetime of Tb3+ in Tb:LSO films was 2.33 ms. The effect of heat-treatment temperature on the luminescent properties was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号