首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用X射线微区分析,对共价法得到的固定化L—天门冬酰胺酶的活性进行了分析。L—天门冬酰胺作为底物,MgCl2作为捕捉剂,底物经L-天门冬酰胺酶催化分解产生氨,后者和捕捉剂反应产生沉淀,可以确定固定化L-天门冬酰胺酶的催化活性部位。结果表明:大孔树脂载体,酶活较高,活性L-天门冬酰胺酶分布较均匀。并得到了固定化L-天门冬酰胺酶的活性定位的最佳条件。并对不同结构载体固定化酶活性进行了研究。  相似文献   

2.
功率超声对酶促反应的影响   总被引:17,自引:0,他引:17       下载免费PDF全文
本文评述了功率超声在水溶液和有机中对酶促反应的影响,对固定化酶的影响,同时探讨了功率超声影响酶促反应的可能机理,并并评价功能超声作为一种工业生物化学反应促进手段的可能性。  相似文献   

3.
固定化木瓜蛋白酶活性的X-射线微区分析   总被引:1,自引:0,他引:1  
利用X-射线微区分析,对共价法得到的固定化木瓜蛋白酶的活性进行了分析;Na-苯甲酰-L-精氨酰胺盐酸盐作为底物,FeCl_3作为捕捉剂,底物经木瓜蛋白酶催化分解产生L-精氨酸及氨,后者和捕捉剂反应产生沉淀,可以确定固定化木瓜蛋白酶的催化活性部位。结果表明:以大孔结构吸附树脂为固定化酶载体,酶活较高,木瓜蛋白酶分布较均匀。并得到了固定化木瓜蛋白酶的活性定位的最佳条件。并对不同结构载体固定化木瓜蛋白酶的活性进行了研究。  相似文献   

4.
磁性纳米颗粒Fe3O4固定化纤维素酶的光谱学研究   总被引:1,自引:0,他引:1  
以氨水作沉淀剂,用共沉淀法制备了磁性纳米颗粒Fe3O4,并以此为载体,通过碳化二亚胺的活化作用将纤维素酶固定化,通过傅里叶红外和重复多次催化实验证实纤维素酶在磁性纳米颗粒上的固定,透射电镜表征了固定化酶微粒的形貌.用DNS分光光度法测定固定化纤维素酶的活性,研究表明磁性固定化酶的催化作用的最适温度为60℃和pH值为3.94~5.50.结果表明,磁性固定化纤维素酶具有比自由酶更好的热稳定性,贮存稳定性和更广泛的pH值适用范围,为纤维素的转化和利用效率的提高提供了理论基础.  相似文献   

5.
超声波对木瓜蛋白酶催化活性影响的机理研究   总被引:4,自引:0,他引:4       下载免费PDF全文
木瓜蛋白酶经适当参数的超声波处理后酶活力提高。超声处理后酶的米氏常数Km变小,最大反应速率Vm也减小。超声处理后酶的紫外吸收光谱不变,荧光发射光谱也不改变,而差示光谱出现明显的正峰和负峰。研究结果表明,超声波处理后,木瓜蛋白酶的构型没有改变,而构象发生了变化。本文讨论了超声波影响木瓜蛋白酶活性的可能机理。  相似文献   

6.
超声波强化超滤过程   总被引:5,自引:0,他引:5       下载免费PDF全文
陈健  肖凯军  郭祀远  李琳 《应用声学》2002,21(5):45-48,39
本文综述了超声波强化超滤的实验方法,超声波对越滤膜结构的影响及超声波强化清洗超滤膜等方面的研究进展,论述了超声波强化超滤的作用机理,声冲流和空化作用在超声波强化超滤中起到主要作用。  相似文献   

7.
超声波强化膜分离的研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
阎杰  丘泰球 《应用声学》2003,22(5):45-48
本文综述了超声波强化膜分离的机理,国内外超声波强化膜分离的研究现状以及影响超声波强化膜分离的因素(如声场参数、操作参数、料液性质等);同时评述了该技术存在的问题。现有的研究成果表明:如何在利用超声波提高膜分离效率的同时,减小超声波对有机溶质及膜稳定性的影响,应是近期的研究重点。  相似文献   

8.
超声波对菠萝果蛋白酶活性和光谱的影响   总被引:17,自引:1,他引:16       下载免费PDF全文
以菠萝果为材料,用盐析法制备菠萝果蛋白酶粗酶,进一步经SephadexG-50和DEAE-纤维素柱层析纯化,其SDS—PAGE呈单一的电泳带,并获得了菠萝果蛋白酶结晶。一定参数的超声作用可以使酶活力提高,经光谱分析,超声处理后酶的吸收光谱不改变,而荧光发射峰由336nm红移到339nm,紫外差示光谱在一定的波长也呈现出明显的正峰和负峰。本文讨论了超声波影响菠萝果蛋白酶活性的机理。  相似文献   

9.
滕萍 《光谱实验室》2012,29(3):1707-1709
对海参胶囊中海参多糖进行提取纯化。分别探讨了酶解法、超声波提取方法;双氧水、活性炭脱色法及乙酸钾、三氯乙酸法除蛋白方法对海参多糖的得率的影响。确定最适提取条件:1g胶囊在胰蛋白酶加酶量为8000U/g,温度为37℃,pH 8.1,酶解3h后酶解完全;醇沉得到粗多糖后,经双氧水脱色、乙酸钾除蛋白。  相似文献   

10.
本文通过对第二届全国超声治疗学术会议论文的综合介绍,展示了我国超声波治疗方面的近期实验研究工作:不同频率超声波的透入、低频超声对小分子通过半透膜的影响、超声波治疗实验性家犬脑出血的疗效、颅骨对超声波的吸收率、超声波对组织硬结作用的动物实验、超声波对细菌的作用等.文章还报道了临床应用方面所取得的新进展.  相似文献   

11.
This study presents a state-of-the-art overview on the application of ultrasound technology in the drying of food products, including the ultrasound pre-treatment and ultrasound assisted drying. The effect of main parameters and ultrasound technology on the drying kinetics and food quality were discussed. Inconsistencies were pointed out and analyzed in detail. Results showed that for ultrasound pre-treatment, the food products may lose or gain water and increase of ultrasonic parameters (sonication time, amplitude and ultrasound power) promoted the water loss or water gain. When ultrasound technology was applied prior to drying, an increase in drying kinetics was always observed, though some different results were also presented. For ultrasound assisted drying, the ultrasound power always gave a positive effect on the drying process, however, the magnitude of ultrasound improvement was largely dependent on the process variables, such as air velocity, air temperature, microwave power and vacuum pressure, etc. The application of ultrasound technology will somehow affect the food quality, including the physical and chemical ones. Generally, the ultrasound application can decrease the water activity, improve the product color and reduce the nutrient loss.  相似文献   

12.
Deshuai Sun  Qingjie Guo  Xin Liu 《Ultrasonics》2010,50(4-5):441-446
The acceleration efficiency of ultrasound was investigated by different application of ultrasound during dyeing process in an ultrasound cleaner. Actual energy dissipated into the dyeing bath was measured to ensure the formation of ultrasound cavatiation. The experimental findings showed ultrasound pretreatment could improve slightly the dye exhaustion and fixation, but failed to improve fastness of dyed fabrics. Obvious enhancement effects on dye exhaustion and fixation were achieved in continuous and intermittent ultrasound dyeing processes, and slight improvement effects on some fastness properties of fabrics dyed in ultrasound fields were observed. A comparison of the efficiencies in two ultrasound dyeing processes revealed the dyeing process in intermittent ultrasound field would benefit to making full use of ultrasound energy.  相似文献   

13.
The focused ultrasound plays a role in localization and modulating the scattering light in ultrasound- modulated optical tomography (UOT). Both the modulation efficiency of the scattering light and the spatial resolution of UOT are determined by ultrasound. The effects of repetition frequency and pulse energy of impulse ultrasound on the modulated scattering light are derived through experiment in this letter. Purthermore, we compare the imaging sensitivity with 1, 2.25, 5, and 10 MHz center frequencies of impulse ultrasound. Experimental results demonstrate that better signal-to-noise ratios and higher sensitivities can be gained by use of more intense ultrasound and lower ultrasound frequencies.  相似文献   

14.
张春兵  邱媛媛  郗晓宇  章东 《物理学报》2009,58(6):3996-4001
理论及实验研究了超声增强脂质体与细胞的相互作用.实验制作了包裹荧光素的脂质体,利用1 MHz聚焦超声增强脂质体与乳癌细胞的相互作用,采用荧光显微镜观察与荧光素结合前后细胞的变化,流式细胞仪定量检测细胞中包含的荧光素.结果表明,在声压幅度为0.24 MPa超声作用40 s后,细胞吸收荧光素能力比对照组(无超声作用)有8.78%的提高.理论讨论了超声增强脂质体与细胞相互作用的可能物理机制,指出超声诱发的脂质体运动及脂质体的粒径变化是超声增强脂质体与细胞相互作用的原因. 关键词: 脂质体 药物传递 超声辐射力  相似文献   

15.
This study aimed at investigating the performances of air drying of blackberries assisted by airborne ultrasound and contact ultrasound. The drying experiments were conducted in a self-designed dryer coupled with a 20-kHz ultrasound probe. A numerical model for unsteady heat and mass transfer considering temperature dependent diffusivity, shrinkage pattern and input ultrasonic energies were applied to explore the drying mechanism, while the energy consumption and quality were analyzed experimentally. Generally, both airborne ultrasound and contact ultrasound accelerated the drying process, reduced the energy consumption and enhanced the retentions of blackberry anthocyanins and organic acids in comparison to air drying alone. At the same input ultrasound intensity level, blackberries received more ultrasound energies under contact sonication (0.299 W) than airborne sonication (0.245 W), thus avoiding the attenuation of ultrasonic energies by air. The modeling results revealed that contact ultrasound was more capable than airborne ultrasound to intensify the inner moisture diffusion and heat conduction, as well as surface exchange of heat and moisture with air. During air drying, contact ultrasound treatment eliminated the gradients of temperature and moisture inside blackberry easier than airborne ultrasound, leading to more homogenous distributions. Moreover, the total energy consumption under air drying with contact ultrasound assistance was 27.0% lower than that with airborne ultrasound assistance. Besides, blackberries dehydrated by contact ultrasound contained more anthocyanins and organic acids than those dried by airborne ultrasound, implying a higher quality. Overall, direct contact sonication can well benefit blackberry drying in both energy and quality aspects.  相似文献   

16.
Influence of preparation methods and ultrasound irradiation on physico-chemical and catalytic properties was investigated by synthesizing Pt-ZSM-5 and Pt-Beta catalysts by in-situ and impregnation methods and applying ultrasound irradiation to synthesis gel mixture of ZSM-5 and Beta zeolites. It was concluded from the X-ray powder diffraction patterns of Pt-ZSM-5 and Pt-Beta zeolite catalysts that introduction of Pt by in-situ method and ultrasound irradiation did not influence the structures of ZSM-5 and Beta zeolites. Morphology of ZSM-5 and Beta zeolites were investigated by scanning electron microscopy. SEM micrographs showed that the Pt-ZSM-5-IS-US catalyst synthesized by in-situ method with ultrasound irradiation resulted in smaller crystals of ZSM-5 than Pt-ZSM-5-IS catalyst prepared without ultrasound irradiation. Furthermore SEM micrographs of Pt-Beta-11-IS-US zeolite synthesized using ultrasound irradiation showed much smaller crystals than Pt-Beta-11-IM indicating that ultrasound irradiation had a significant effect on the morphology of Beta zeolite. Conversion of n-pentane and selectivity to iso-pentane over the Pt-ZSM-5-IS-US zeolite catalysts prepared by ultrasound irradiation during in-situ introduction of platinum was higher than the catalysts prepared without the ultrasound irradiation. Furthermore ultrasound irradiated and in-situ synthesized Pt-Beta-11-IS-US catalyst also showed higher selectivity to iso-pentane than Pt-H-Beta-11-IM prepared by impregnation method.  相似文献   

17.
The aim of this work is the evaluation of the effects of ultrasound on p-chlorophenol adsorption-desorption on granular activated carbon. Adsorption equilibrium experiments and batch kinetics studies were carried out in the presence and the absence of ultrasound at 21 kHz. Results indicate that the adsorption of p-chlorophenol determined in the presence of ultrasound is lower than the adsorption observed in the absence of ultrasound. Desorption of p-chlorophenol from activated carbon with and without the application of ultrasound was studied. The desorption rates were favoured by increased ultrasound intensity. This rise is more noticeable as temperature increases. The addition of ethanol or NaOH to the system causes an enhancement of the amount of p-chlorophenol desorbed, especially in the presence of ultrasound. A synergetic enhancement of the desorption rate was observed when ultrasonic irradiation was coupled with ethanol chemical regeneration.  相似文献   

18.
Ultrasound has been proven to enhance the mass transfer process and impact the fabrication of anodic aluminum oxide (AAO). However, the different effects of ultrasound propagating in different media make the specific target and process of ultrasound in AAO remain unclear, and the effects of ultrasound on AAO reported in previous studies are contradictory. These uncertainties have greatly limited the application of ultrasonic-assisted anodization (UAA) in practice. In this study, the bubble desorption and mass transfer enhancement effects were decoupled based on an anodizing system with focused ultrasound, such that the dual effects of ultrasound on different targets were distinguished. The results showed that ultrasound has the dual effects on AAO fabrication. Specifically, ultrasound focused on the anode has a nanopore-expansion effect on AAO, leading to a 12.24 % improvement in fabrication efficiency. This was attributed to the promotion of interfacial ion migration through ultrasonic-induced high-frequency vibrational bubble desorption. However, AAO nanopores were observed to shrink when ultrasound was focused on the electrolyte, accompanied by a 25.85 % reduction in fabrication efficiency. The effects of ultrasound on mass transfer through jet cavitation appeared to be the reason for this phenomenon. This study resolved the paradoxical phenomena of UAA in previous studies and is expected to guide AAO application in electrochemistry and surface treatments.  相似文献   

19.
This study aimed to investigate the effects of high-intensity ultrasound treatment on the functional properties and emulsion stability of Neosalanx taihuensis myofibrillar protein (MP). The results showed that the carbonyl groups, emulsification properties, intrinsic fluorescence intensity, and surface hydrophobicity of the ultrasound treated MP solution were increased compared to the MP without ultrasound treatment. The results of secondary structure showed that the ultrasound treatment could cause a huge increase of β-sheet and a decline of α-helix of MP, indicating that ultrasound induced molecular unfolding and stretching. Moreover, ultrasound reduced the content of total sulfhydryl and led to a certain degree of MP cross-linking. The microscopic morphology of MP emulsion indicated that the emulsion droplet decreased with the increase of ultrasound power. In addition, ultrasound could also increase the storage modulus of the MP emulsion. The results for the lipid oxidation products indicated that ultrasound significantly improved the oxidative stability of N. taihuensis MP emulsions. This study offers an important reference theoretically for the ultrasound modification of aquatic proteins and the future development of N. taihuensis deep-processed products represented by surimi.  相似文献   

20.
Ultrasound technique is one of the unconventional enhanced oil recovery methods which has been of interest for more than six decades. However, the majority of the oil recovery mechanisms under ultrasound reported in the previous studies are theoretical. Emulsification is one of the mechanisms happening at the interface of oil and water in porous media under ultrasound. Oppositely, ultrasound is one of the techniques using in oil industry for demulsification of oil/water emulsion. Therefore, the conditions in which emulsification becomes dominant over demulsification under ultrasound should be more investigated. Duration of ultrasound radiation could be one of the factors affecting emulsification and demulsification processes. In this study a technique was developed to investigate the effect of long and short period of ultrasound radiation on emulsification and demulsification of paraffin oil and surfactant solution in porous media. For this purpose, the 2D glass Hele-shaw models were placed inside the ultrasonic bath under long and short period of radiation of ultrasound. A microscope was used above the model for microscopic studies on the interface of oil and water. Diffusion of phases and formation of emulsion were observed in both long and short period of application of ultrasound at the beginning of ultrasound radiation. However, by passing time, demulsification and coalescence of brine droplets inside emulsion was initiated in long period of ultrasound application. Therefore, it was concluded that emulsification could be one of the significant oil recovery mechanisms happening in porous media under short period of application of ultrasound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号