首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用了高反射率金属Al和电化学性能稳定的金属Mo,在硅基底上制备了多层结构的Al/Mo/MoO_3阳极,并研究了不同MoO_3厚度下多层阳极的反射率。在此基础上,通过发光层共掺杂制备了顶部发光OLED器件,并对器件发光机制进行了系统研究和分析。实验结果表明:采用发光层共掺杂制备的顶部发光OLED器件的色坐标,随电流密度或电压的增加而发生漂移;OLED器件色坐标漂移的原因是三基色发光强度随电流密度的增加,逐渐偏离了形成白光(0.33,0.33)所需三基色强度比例值,导致了OLED器件的色坐标发生了漂移,其机制是发光层中主-客之间能量转移和陷阱共同作用的结果。进一步研究发现,在不同电压下,红光发光强度随驱动电压(或电流密度)增大而线性地减小。  相似文献   

2.
制作了具有微腔结构的蓝色有机顶发射电致发光器件。利用TBADN∶3%DSAPh为发光材料,结构为Ag/ITO/CuPc/NPB/TBADN∶3%DSAPh/Alq3/LiF/Al(Ag)。在玻璃基片上,制备Ag为阳极反射层,CuPc作为空穴注入层,NPB作为空穴传输层,ITO为光程调节层;Al/Ag作为半透明阴极,电极的透射率在30%左右。得到了半高宽仅为17nm发光光谱,实现了窄带发射。通过改变ITO的厚度,得到了纯度较高的蓝色发光光谱,色坐标为(0.141,0.049),实现了高色饱和度的发射。在文章中,作者研究了微腔器件的发光强度,当选择合适的阴极透射率时可以使发光强度达到最大。根据相关的公式,计算出了发光强度随阴极透射率(或者反射率)变化的近似曲线。  相似文献   

3.
使用R-4B作为磷光掺杂剂,CBP为主体,制作以BCP调节载流子复合的红色磷光器件,器件结构ITO/MoO3(30)/NPB(40)/TCTA(10)/CBP:R-4B(6%)(15)/BCP(x)/CBP:R-4B(6%)(15)/BCP(10)/Alq3(40)/LiF/Al, 其中x为BCP的厚度,对五种不同厚度的器件和一个对MoO3优化好且不加BCP的对比器件,来研究它们的发光性能和效率。实验表明:对于面积为1.18 cm2的器件,BCP为4 nm, MoO3在30 nm时,它的性能达到了最佳,启亮电压为4 V,最大效率为18.9 cd·A-1,其对应的EL主峰位于612 nm, 色坐标为(0.643,0.353), 得到了稳定高效的红色磷光OLED器件。  相似文献   

4.
激子形成区域随电场变化的移动会使得有机电致发光器件(OLEDs)的效率和色度发生改变,从而影响器件的性能。文章首先制备了两种OLED器件,器件1为ITO/PEDOT∶PSS/PVK∶Ir(ppy)3∶DCJTB (100∶2∶1 wt)/BCP(10 nm)/Alq3(15 nm)/Al,器件2为ITO/PEDOT∶PSS/PVK∶Ir(ppy)3(100∶2 wt)/BCP(10 nm)/Alq3(15 nm)/Al,研究了电场强度对单层多掺杂结构器件激子形成的影响。实验发现在多掺杂发光层中,随着电压的增加,Ir(ppy)3,PVK和DCJTB的发光均增强,PVK和DCJTB发光增强更快。对其发光机制进行分析,认为较高电场下,载流子获得较高能量,更容易形成高能量激子,产生宽禁带材料PVK的发光;另一方面,从能级结构分析DCJTB的带隙较窄, 俘获更多的载流子发光更强。同时,在器件的电致发光(EL)光谱发现在460 nm处一新的发射峰, 发光随着电压的增大相对减弱。为了研究460 nm发光的来源,制备了器件:ITO/PEDOT∶PSS/PVK∶BCP∶Ir(ppy)3(xy∶2 wt)/Alq3(15 nm)/Al, 改变x, y的比值研究发现,460 nm处的发光依然存在,推测此发光峰应与PVK及BCP之间有关。  相似文献   

5.
利用磷光敏化改善聚合物白光OLED性能   总被引:2,自引:2,他引:0       下载免费PDF全文
基于新型聚合物白光材料PF-DTFO制备了一种聚合物白光发光二极管(PWOLED),通过在聚合物发光层中掺杂蓝光磷光染料FIrpic,利用磷光敏化发光原理,改善器件电致发光性能。在敏化PWOLED中,掺杂的FIrpic染料作为给体将产生的三重态能量传递给白光聚合物的长波发射基团,进一步提高了长波基团的发光强度,改善了白光光谱,使基色更平衡并且光谱更稳定。驱动电压从8 V增加到16 V时,器件电致发光光谱基本不变,色坐标仅从(0.33,0.38)移动至(0.32,0.38)。敏化后的器件发光效率相对于未掺杂器件提高了38%。  相似文献   

6.
基于在聚合物中掺杂染料DCJTB的白色有机电致发光器件   总被引:1,自引:0,他引:1  
将Alq3和DCJTB作为掺杂物与基质PVK按照不同比例混合共溶,旋涂成膜,制备了PVK∶Alq3∶DCJTB为发光层的结构为ITO/ PVK∶Alq3∶DCJTB/ BCP/Alq3/LiF/Al的器件,其中Alq3和BCP分别用作电子传输层和空穴阻挡层,PVK用作蓝光发光层和空穴传输层。保持PVK和DCJTB的质量比为100∶1不变,改变PVK和 Alq3的质量比,当PVK和Alq3的质量比为20∶1时,得到了效果较好的白光。器件在电压为14 V时,色坐标达到(0.33,0.36),在10~14 V范围内变化甚微。  相似文献   

7.
微腔有机电致发光器件的角度依赖性   总被引:1,自引:1,他引:0       下载免费PDF全文
设计并制作了两个器件,一个是微腔有机电致发光器件(MOLED):G/DBR/ITO/NPB(46 nm)/DPVBi(20 nm)/Alq3(56 nm)/LiF(1 nm)/Al(150 nm);一个是无腔器件(OLED):G/ITO/NPB(46 nm)/DPVBi(20 nm)/Alq3(56 nm)/LiF(1 nm)/Al(150 nm)。测试并分析了器件性能。OLED在电流密度30 mA/cm2时的电致发光(EL)光谱随观测角度由0°~70°都是一宽谱带,是发光层DPVBi的特征发光谱,峰值都在452 nm处,半峰全宽均为70 nm,色坐标均为(x=0.18,y=0.19),无腔器件没有角度依赖性。相同电流密度下,微腔器件的EL谱随观测角度由0°~70°,发光峰值蓝移,由472 nm逐渐移至428 nm;峰值相对强度渐弱,由0.32变至0.02;半峰全宽由14 nm增加至120 nm;色坐标由(x=0.14,y=0.10)变至(x=0.19,y=0.25),颜色由紫蓝变成蓝白到接近白色。微腔器件具有明显的角度依赖性。  相似文献   

8.
制备了结构为ITO/MoO3(40 nm)/NPB(40 nm)/TCTA(10 nm)/CBP∶GIr1(14%)∶R-4B(2%)(20 nm) /间隔层(3 nm)/ CBP∶GIr1(14%)∶R-4B(2%)(10 nm)/BCP(10 nm)/Alq3(40 nm)/LiF(1 nm)/Al(100 nm) 的有机电致发光器件,间隔层分别为CBP,TCTA,TPBI和BCP,GIr1和R-4B分别为绿红磷光材料。通过加入不同间隔层来调控载流子和激子在发光层内的分布并研究了其对器件发光性能的影响。研究表明TCTA,TPBI和BCP分别作为间隔层的器件较CBP为间隔层的参考器件,电压为6 V时,电流效率分别高出59%,79%和93%,以BCP为间隔层的器件效率最高达到22.58 cd·A-1;TPBI和BCP为间隔层相对于以TCTA为间隔层的器件,在较高的电流密度下,效率滚降更小。分析原因TCTA间隔层较高的LUMO能级和三线态能量将电子和激子限制在较窄的复合区域,提高了载流子相遇形成激子的概率,在较高电流密度下猝灭也更严重;TPBI和BCP由于具有较高的HOMO能级和电子传输能力,拓宽了激子的复合区域。间隔层引起电子或空穴的累积,形成较高的空间电场,有利于发光层相应载流子的注入与传输。由于发光层掺杂方式为红绿共掺,器件均获得了较好的色坐标稳定性。  相似文献   

9.
以MADN为空穴传输层,主-客掺杂体系[Alq3∶0.7 Wt%rubrene]为发光兼电子传输层,构建了双层结构的高效率黄绿光OLED器件。该器件的黄绿光由主发光体Alq3通过不完全能量转移到客发光体rubrene实现,电致发光峰值位于560 nm,1931CIE色坐标为(0.46, 0.52),最大发光效率达到了7.63 cd·A-1,比相应的NPB做空穴传输层的双层结构器件提高了30%。通过构建以MADN或NPB为空穴传输层的空穴单载流子器件并进行阻抗谱分析,结果表明MADN可以作为一种非常有效的空穴传输层,其空穴迁移性略低于NPB,这恰好弥补了OLED器件中空穴迁移比电子迁移快这一缺陷,为改善OLED发光层中载流子的平衡性创造了条件,从而提高了器件的发光效率。此外,MADN做空穴传输层的双层结构OLED的发光效率与传统三层结构器件(MADN和Alq3分别作为空穴传输层和电子传输层)基本相当,表明了这种双层结构器件在简化器件结构的同时并不以牺牲发光效率为代价,发光层[Alq3∶0.7 Wt%rubrene]兼具有优良的电子传输性能。  相似文献   

10.
研究了以芴类蓝光材料PFO为主体,通过掺杂MEH-PPV得到单层的白光有机电致发光器件,并从掺杂浓度对器件的光谱特性和色坐标稳定性的影响方面对其发光性能进行了分析研究。在MEH-PPV以2.5Wt%掺杂时,器件开启电压为3V,发光色坐标可达到标准白光等能点(0.33,0.33),器件发光色坐标在5~20V很宽的范围内随电压变化幅度很小,基本稳定在白光区。  相似文献   

11.
为研究基于混合量子点的QLED结构与性能,利用红光量子点以及绿光量子点两种材料制备了橙光QLED器件,并对其性能进行了表征。实验制备的器件结构为ITO/PEDOT∶PSS/poly-TPD/混合QDs/Zn O/Al,其中发光层采用了3种混合量子点的混合结构方案。方案一先旋涂红光量子点层,后旋涂绿光量子点层;方案二先旋涂绿光量子点层,后旋涂红光量子点层;方案三将红光、绿光量子点1∶1混合后制备为发光层。实验结果表明:方案一制备的器件电流密度最大,发光亮度最低,且只有红光谱;方案二制备的器件具有最小的电流密度,同时具有红、绿光谱,在8 V电压下,电流效率约为4.69 cd/A;方案三制备的器件同时具有红、绿光谱,电流密度与发光特性介于方案一与方案二之间。实测数据与理论分析是一致的,方案二制备的器件存在双能量陷阱,能够将注入的空穴以及电子同时限制在红光量子点层内。通过调节各功能层厚度使得载流子注入平衡,可进一步增大发光电流,提高器件效率。  相似文献   

12.
掺杂型红色有机电致发光显示器件   总被引:6,自引:5,他引:1       下载免费PDF全文
全色显示是有机电致发光显示(OLED)器件发展的目标,而高性能红色发光器件一直是制约全彩色OLED器件实用化的瓶颈,也是目前有机电致发光显示研究的热点。制作了掺杂DCJTB和不同浓度的rubrene两种荧光染料的红色有机电致发光显示器件,以NPB和Alq3分别作为空穴传输层和电子传输层,发现器件性能与只掺杂DCJTB的器件相比有明显提高,发光效率提高到2~3倍。通过Frster理论和能带理论分析了器件的能量转移机理,研究发现Frster能量转移不是掺杂器件能量转移的主要形式,载流子俘获机制才是器件效率提高的主要原因;rubrene的引入使得能量能够更有效地从Alq3转移到DCJTB,从而显著地提高了器件的发光效率和性能。  相似文献   

13.
依发光层顺序和厚度调节的多发光层白色有机发光器件   总被引:1,自引:0,他引:1  
多层结构器件中发光层顺序及厚度对光谱影响很大。文章以RBG(红蓝绿)为基色,制备了具有不同发光层组合次序及厚度的系列白色有机电致发光器件。器件结构为ITO/CuPc(12 nm)/NPB(50 nm)/EML/LiF(1 nm)/Al(100 nm)。使用的蓝色发光材料为2-t-butyl-9,10-di-(2-naphthyl)anthracene (TBADN),掺杂剂为p-bis(p-N, N-diphenyl-amono- styryl)benzene(DSA-Ph),绿色发光材料为tris-[8-hydroxyquinoline]aluminum(Alq3),掺杂剂为C545,红色发光材料为tris-[8-hydroxyquinoline]aluminum(Alq3),掺杂剂为4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran(DCJTB)。通过调节各发光层的顺序和厚度,在200 mA·cm-2时,得到了电流效率为5.60 cd·A-1,色坐标为(0.34, 0.34)的性能稳定的白光器件。当电流密度为400 mA·cm-2时,最大亮度达到了20 700 cd·m-2。根据激子产生及扩散理论对实验结果进行了分析,建立了发光光谱与各发光层的发光效率、各层厚度及激子扩散层长度之间的关系方程, 并以其计算了具有不同红层厚度的RBG结构的光谱的红蓝强度比。计算结果表明实验结果与理论相符。  相似文献   

14.
有机吡啶盐的电致发光   总被引:1,自引:1,他引:0       下载免费PDF全文
有机盐是一种离子化合物,其分子间依靠比范德瓦尔斯力大得多的离子键结合,这有利于器件稳定性的提高。主要研究一种以新型有机吡啶盐ASPT(trans-4-[P-(N-ethyl-N-(hydroxylethyl)-amino)styryl]-N-methylpyridinium tetraphenyl-borate)作发光层的有机电致发光特性。实验发现有机盐ASPT是一种性能较好的红光发射材料。利用ASPT作发光层的单层电致发光器件,可获得稳定的红色电致发光。通过对外场界面势垒影响分析,我们讨论了这种单层器件的发光机理。为了探索ASPT中载流子传输与复合过程,并提高器件性能,设计了ASPT/Alq3双层和TPD/ASPT/Alq3三层结构的器件,进一步研究了它们的光电特性。实验结果表明,利用双层器件可获得亮度较高的红色发光。而在三层器件中,由于不同功能层的载流子传输特性的差别,激发复合区域受到驱动电压的显著影响,因此电致发光光谱随电压的变化而变化。通过对光谱结构、能级位置的分析,讨论了相关的发光机理。  相似文献   

15.
以蓝色发光材料DPVBi为基质的白色发光器件   总被引:8,自引:3,他引:5  
白色有机发光器件是实现彩色平板显示的重要方案之一。利用蓝色发光材料DPVBi[4,4′—(2,2—苯乙烯基)—1,1′—联苯]掺杂红光染料DCJTB[4—氰甲烯基—2—叔丁基—6—(1,1,7,7—四甲基久洛尼定基—9—烯炔基—4H—吡喃)]作发光层制备了白色发光器件。研究了DPVBi掺杂不同浓度IDCJTB薄膜的光致发光性质,根据光致发光结果,制备了以DPVBi掺杂不同浓度DCJTB作发光层的电致发光器件,其结构为ITO/GuPc/NPB/DPVBi:DCJTB/Alq3/LiF/Al。当DCJTB质量分数为0.0008时,器件实现了白色发光(色度x=0.25,y=0.32),电致发光和光致发光的掺杂比例基本相符,表明器件的白色发光主要是由基质DPVBi向掺杂剂DCJTB的能量传递产生的。研究还发现:白色器件随电压升高,光谱中蓝色成分相对于红色成分的比例略有增加,文章对此现象进行了分析。该白光器件在14V时达到最高亮度7822cd/cm^2,在20mA/cm^2电流密度下的亮度为-489cd/cm^2,最大流明效率为1.75lm/W。  相似文献   

16.
通过调整发光层DPVBi的厚度和在器件中的位置,在同一实验条件下设计了不同的器件结构,制备了有机电致发光器件,在实验中可看到DPVBi的厚度不同,器件的色度发生了改变,并且发现DPVBi在器件的不同位置,器件的发光特性也是不同的。通过实验可以得知处于器件不同位置的DPVBi,其发光机理是不同的,这是由于DPVBi和Alq3的最高未占有轨道(HOMO)能级相差不多,而它们的最低占有轨道(LUMO)能级相差0.4eV,这样DPVBi的存在有利于电子的注入,同时由于rubrene和DPVBi的HOMO相差0.5eV,这样空穴和电子就在rubrene和DPVBi的界面处形成激子复合而发光。也就是说,在rubrene之后的DPVBi对空穴有了阻挡作用,使器件中的空穴和电子达到平衡。通过改变DPVBi的厚度,制备了白光器件,这组白光器件,在7~17V变化范围内器件的色坐标从(0.35,0.37)到(0.33,0.35)变化不大,接近白光等能点(0.33,0.33),是色度比较好的器件。  相似文献   

17.
张乐天  刘士浩  谢文法 《发光学报》2015,36(11):1294-1299
通过在Ag层中引入一层Ge薄膜, 获得了具有低反射率和高反射相移的Ag/Ge/Ag复合阳极, 并制备了基于该阳极的蓝光顶发射有机电致发光器件.阳极高的反射相移使得器件在有机层厚度为100 nm时获得了顶发射蓝光发射, 且阳极较低的反射率减弱了器件内的微腔效应, 使得其电致发光光谱在不同视角下具有良好的稳定性.当Ge的厚度为20 nm时, 器件性能表现最为优良, 最高亮度和最大电流效率分别可达3 612 cd/m2和5.4 cd/A, 且色坐标在视角从0°变化到60°时仅移动了(0.007, 0.006).  相似文献   

18.
采用Li3N掺杂电子注入层Alq3∶Li3N,制作了一种结构为ITO/Alq3 Alq3∶Li3N/Alq3/NPB/MoO3/Al的倒置底发射有机发光器件.其中ITO玻璃作为透明阴极,金属Al作为顶部阳极,在ITO阴极与电子传输层之间加入Li3N n型掺杂层,改善了该器件的电子注入和传输能力|在Al阳极与空穴传输层之间加入MoO3缓冲层,降低了Al阳极与NPB之间较大的空穴注入势垒,改善了空穴注入能力.实验表明:此结构的倒置底发射有机发光器件性能可达到传统结构的常用有机发光器件如ITO/NPB/Alq3/LiF/Al的性能,完全可以满足非晶硅薄膜晶体管有源有机发光器件中驱动电路的匹配及性能要求.  相似文献   

19.
将红、绿、蓝3种不同颜色的染料分别掺杂到相同的母体材料2,7-二(二苯基磷酰)-9-(4-二苯基胺)苯基-9-苯基芴(POAPF)中,制得了可发3种颜色光的高效率有机电致发光器件。进一步将两种互为补偿色的发光材料以合适的掺杂浓度掺到POAPF中,制得了高效率白光器件。该白光器件采用了单发光层结构,器件电致发光光谱稳定性好,随驱动电压变化较小。4种不同颜色的发光器件的最大功率效率分别为16.50,43.72,29.78,32.83 lm/W。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号