首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of oxygen vacancies on the structural, magnetic, and transport properties of La1–x Sr x MnO3 (x=0.1, 0.2, 0.33, 0.4, and 0.5) grown around a critical point (without/with oxygen vacancies) under low oxygen pressure (10 Pa) and high oxygen pressure (40 Pa). We found that all films exhibit ferromagnetic behavior below the magnetic critical temperature, and that the films grown under low oxygen pressures have degraded magnetic properties with lower Curie temperatures and smaller magnetic moments. These results show that in epitaxial La1–x Sr x MnO3 thin films, the magnetic and transport properties are very sensitive to doping concentration and oxygen vacancies. Phase diagrams of the films based on the doping concentration and oxygen vacancies were plotted and discussed.  相似文献   

2.
Crystalline ω-Al7Cu2Fe bulk samples were prepared by arc furnace and then by means of milling, the average grain size of these samples is reduced to the nanometer scale. The structural and magnetic properties of the nanostructured ω-Al7Cu2Fe phase have been studied by X-ray diffraction employing Rietveld method, Mössbauer spectroscopy and vibrating sample magnetometry. The results indicate that the average grain size of the synthesized sample (ω-phase) rapidly decreases from 79 to 12 nm after 5 h of milling. Furthermore, the hyperfine parameters of the nanostructured samples are higher than the values for the bulk ω-phase. Magnetic measurements show a weak ferromagnetic behavior with M s ?=?0.46 emu.g???1 for the bulk ω-phase. After the milling process this value increases to M s ?=?1.50 emu.g???1 due to the formation and growth of a magnetic interstitial region after reducing the average grain size of the sample.  相似文献   

3.
Perovskite manganite La2/3Ca1/3MnO3 thin films were directly grown on MgO(100), Si(100) and glass substrates by pulsed laser deposition. From the XRD patterns, the films are found to be polycrystalline, single-phase orthorhombic. The metal–insulator transition temperature is 209 K for LCMO/MgO, 266 K for LCMO/Si and 231 K for film deposited on the glass substrate. The conduction mechanism in these films is investigated in different temperature regimes. Low-temperature resistivity data below the phase transition temperature (T P) have been fitted with the relation \( \rho = \rho_{0} + \rho_{2} T^{2} + \rho_{4.5} T^{4.5} \) , indicating that the electron–electron scattering affects the conduction of these materials. The high-temperature resistivity data (T > T P) were explained using variable-range hopping (VRH) and small-polaron hopping (SPH) models. Debye temperature values are 548 K for LCMO/Cg, 568 K for LCMO/Si and 508 K for LCMO/MgO thin films. In all thin films, the best fitting in the range of VRH is found for 3D dimension. The density of states near the Fermi level N (E F) for LCMO/MgO is lower due to the prominent role of the grain boundary in LCMO/MgO and increase in bending of Mn–O–Mn bond angle, which decreases the double exchange coupling of Mn3+–O2–Mn4+ and in turn makes the LCMO/MgO sample less conducting as compared to the other films.  相似文献   

4.
The structural, valence of elements and magnetic characteristics of Ni-implanted Al0.5Ga0.5N films, deposited on Al2O3 substrates by metalorganic chemical vapor deposition (MOCVD), were reported. Ni ions were implanted into Al0.5Ga0.5N films by Metal Vapor Arc (MEVVA) sources under the energy of 100 keV for 3 h. The films were annealed at 900 K in the furnace for the transference of Ni ions from interstitial sites to substitutional sites in AlGaN and activating the Ni3+ ions. Characterizations were carried out in situ using X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS) and Vibrating sample magnetometer (VSM), indicating that the films have wurtzite structure without forming a secondary phase after annealing. Ni ions were successfully implanted into substitutional sites of Al0.5Ga0.5N films and the chemical bonding states of Ni3+ is Ni–N. The apparent hysteresis loops prove the films exhibited ferromagnetism at 300 K. The room temperature (RT) Ms and Hc obtained were approximately 0.22 emu/g and 32.97 Oe, respectively. From the first-principles calculation, A total magnetic moment of 2.86 μB per supercell is calculated: the local magnetic moment of NiN4 tetrahedron, 2.38 μB, makes the primary contribution. The doped Ni atom hybridizes with its four nearby N atoms in NiN4 tetrahedron, then N atoms are spin polarized and couple with Ni atom with strong magnetization, which result in ferromagnetism. Therefore, the p-d exchange mechanism is responsible for ferromagnetism in Ni-doped AlGaN. It is expected that the room temperature ferromagnetic Ni-doped Al0.5Ga0.5N films can make it possible to the applications for the spin electric devices.  相似文献   

5.
La2/3Sr1/3MnO3?δ thin films were deposited by laser ablation on MgO substrates under low oxygen pressure cool down. Their structural and magnetic properties are presented. The magnetic and electrical resistivity measurements indicate a reduction of the Curie and the metal–insulator transition temperatures due to the formation of magnetic inhomogeneneous films, where clusters of a metallic phase are mixed in a magnetically disordered insulating matrix. By a low-angle X-ray reflectivity study we show that the thin films are chemically inhomogeneous with an oxygen deficiency in bulk of the film when compared with the film/air interfacial region.  相似文献   

6.
7.
SnO2 thin films have been deposited on glass substrates by pulsed Nd:YAG laser at different oxygen pressures, and the effects of oxygen pressure on the physical properties of SnO2 films have been investigated. The films were deposited at substrate temperature of 500°C in oxygen partial pressure between 5.0 and 125 mTorr. The thin films deposited between 5.0 to 50 mTorr showed evidence of diffraction peaks, but increasing the oxygen pressure up to 100 mTorr, three diffraction peaks (110), (101) and (211) were observed containing the SnO2 tetragonal structure. The electrical resistivity was very sensitive to the oxygen pressure. At 100 mTorr the films showed electrical resistivity of 4×10−2 Ω cm, free carrier density of 1.03×1019 cm−3, mobility of 10.26 cm2 V−1 s−1 with average visible transmittance of ∼87%, and optical band gap of 3.6 eV.  相似文献   

8.
Magnetism in wide band gap materials is of great interests for future spintronic device applications. We prepared MgO and Fe-doped MgO films ‘in-situ’ on substrates by inkjet printing, and investigated the ferromagnetism tuned by the doping of Fe, the annealing temperature and the film thickness. It is found that the Fe-doping improves the crystallinity of the films with lattice structure changed by annealing temperature. The saturation magnetization (Ms) of the films enhanced by ~5 times comparing with the pure MgO thin film of similar thickness (~90 nm), because of both the long-range ordering of localized 3d electrons in Fe and the defects induced magnetism. The Ms at 5 K decreases with the film thickness, which is mainly attributed to the interface induced ferromagnetism. The Fe-doped MgO films with ferromagnetism in this work can be used in future spintronic devices.  相似文献   

9.
In this work, an effective method to modulate the ferromagnetic properties of Mn-doped GeTe chalcogenide-based phase change materials is presented. The microstructure of the phase change magnetic material Ge1?x Mn x Te thin films was studied. The X-ray diffraction results demonstrate that the as-deposited films are amorphous, and the crystalline films are formed after annealing at 350 °C for 10 min. Crystallographic structure investigation shows the existence of some secondary magnetic phases. The lattice parameters of Ge1?x Mn x Te (x = 0.04, 0.12 and 0.15) thin films are found to be slightly different with changes of Mn compositions. The structural analysis clearly indicates that all the films have a stable rhombohedral face-centered cubic polycrystalline structure. The magnetic properties of the amorphous and crystalline Ge0.96Mn0.04Te were investigated. The measurements of magnetization (M) as a function of the magnetic field (H) show that both amorphous and crystalline phases of Ge0.96Mn0.04Te thin film are ferromagnetic and there is drastic variation between amorphous and crystalline states. The temperature (T) dependence of magnetizations at zero field cooling (ZFC) and field cooling (FC) conditions of the crystalline Ge0.96Mn0.04Te thin film under different applied magnetic fields were performed. The measured data at 100 and 300 Oe applied magnetic fields show large bifurcations in the ZFC and FC curves while on the 5,000 Oe magnetic field there is no deviation.  相似文献   

10.
Magnetic Force Microscopy (MFM) tip coated with perpendicular magnetic anisotropy film (PMA tip) is one of the choices for high resolution imaging at low scan height (SH), since it has negligible tip–sample interaction related to its stable magnetic state, sharp, and small tip stray field. In this work, detailed micromagnetic studies are carried out to understand the effect of geometrical and magnetic parameters including the cone angle θ of the PMA tip, intergrain exchange constant $A_{2}^{*}$ , saturation magnetization M s and uniaxial crystalline anisotropy constant K 1 of the tip coating on the MFM tip resolution. To evaluate the resolution performance of the optimized PMA tip, MFM images of high-density granular recording media and patterned media are simulated. We find that, for the PMA tip and its coating, a cone angle in a range of 36.9° to 53.1°, a saturation M s of 700 emu/cm3, a large uniaxial crystalline anisotropy constant K 1 (>4.9×106 erg/cm3) and a high intergrain exchange constant $A_{2}^{*}$ of (0.3–1.0)×10?6 erg/cm are optimized conditions for high resolution imaging. The optimized PMA tip has an excellent performance on imaging of high-density thin film media (bit size of 8×16 nm2) at low SH of 2–8 nm and bit pattern media with a pitch of 50 nm, edge-edge spacing of 5–15 nm at SH of 8–15 nm.  相似文献   

11.
Polycrystalline Co2Z hexaferrite (Ba3Co2Fe24O41) powders have been prepared via two wet chemical routes: sol gel auto-combustion (SGA) and co-precipitation (CP) methods. The effects of synthesis conditions on the crystal structure, crystallite size, morphology, and magnetic properties were systematically studied. The results revealed that single Co2Z hexaferrite phase was obtained at relatively low temperature 1250 °C for 5 h via the SGA method whereas it was formed at 1300 °C for 6 h using the CP pathway. The microstructures of the pure powders appeared as a hexagonal platelet-like structure. The particle size of the pure Co2Z powders by CP method was higher than as obtained by the SGA method. The soft characteristic loops were obtained for single Co2Z hexaferrite phase synthesized using both routes. High saturation magnetization (M s =53.7 emu/g) was achieved for the Co2Z powder synthesized via the CP method compared with the formed single phase synthesized via the SGA method (M s =47.0 emu/g). Good dielectric and dynamic magnetic properties were obtained for the Co2Z powder synthesized via the SGA method in comparison with the sample synthesized via CP method. The results obtained are discussed on the basis of electromagnetic theory.  相似文献   

12.
李晓其  徐晓光  王圣  吴勇  张德林  苗军  姜勇 《中国物理 B》2012,21(10):107307-107307
Microstructures and magnetic properties of Ta/Pt/Co 2 FeAl(CFA)/MgO multilayers are studied to understand perpendicular magnetic anisotropy(PMA) of half-metallic full-Heusler alloy films.PMA is realized in a 2.5-nm CFA film with B2-ordered structure observed by a high resolution transmission electron microscope.It is demonstrated that a high quality interface between the ferromagnetic layer and oxide layer is not essential for PMA.The conversions between in-plane anisotropy and PMA are investigated to study the dependence of magnetic moment on temperature.At the intersection points,the decreasing slope of the saturation magnetization(M s) changes because of the conversions.The dependence of M s on the annealing temperature and MgO thickness is also studied.  相似文献   

13.
The nanocrystalline ZnO thin films were deposited by pulsed laser deposition on quartz and i-Si (100) substrates at different substrate temperatures (473 K–873 K) and at different mixed partial pressures (0.05, 0.01, and 0.5 mbar) of Ar+O2. The structural studies from XRD spectra reveals that the films deposited at 0.05 mbar and at lower substrate temperatures were c-axis oriented with predominant (002) crystallographic orientation. At 873 K along with (002) orientation, additional crystallographic orientations were also observed in case of films deposited at 0.01 and 0.5 mbar pressures. The composition of Zinc and Oxygen in ZnO films from EDAX reveals that the films deposited at lower partial pressures were have high at.% of O2 whereas higher partial pressures and substrate temperatures had high at.% Zn. The surface microstructure of the films show that the films deposited at lower partial pressures (0.05 mbar ) and at lower substrate temperatures (473 K) were found to have nanoparticles of size 15 nm where as films deposited at 873 K have nanorods. The length of these nanorods increases with increasing Ar+O2 partial pressure to 0.5 mbar. The optical energy gap of the film deposited at lower partial pressure and substrate temperature was 3.3 eV and decrease with the increase of substrate temperatures. The films deposited at 0.5 mbar and at 873 K emitted an intense luminescence at a wavelength of 390 nm. The measured thickness of deposited films by spectroscopic ellipsometry is around 456 nm.  相似文献   

14.
《Current Applied Physics》2014,14(5):794-797
A ZnO thin-film transistor (TFT) with an MgO insulator was fabricated on a silicon (100) substrate using a radiofrequency magnetron sputtering system. The MgO insulator was deposited using the same deposition system; the total pressure during the deposition process was maintained at 5 mTorr, and the oxygen percentage of O2/(Ar + O2) was set at 30%, 50%, or 70%. The process temperature was maintained at below 300 °C. The dielectric constant of the MgO thin layer was approximately 11.35 with an oxygen percentage of 70%. This ZnO TFT displayed enhanced transistor properties, with a field-effect mobility of 0.0235 cm2 V−1 s−1, an ION/IOFF ratio of ∼105, and an SS value of 1.18 V decade−1; these properties were superior to those measured for the MgO insulators synthesized using oxygen percentages of 30% and 50%.  相似文献   

15.
x La2/3+yTiO3-δ perovskite (with δ≤0.5) were deposited by the laser ablation technique from Li0.33La0.56TiO3 targets. Their growth onto MgO substrateswas studied as a function of the oxygen pressure. For films grown in vacuum (10-6 mbar), a La0.63TiO2.5 composition was obtained, meaning that Ti3+ alone is present in the films, while Li ions are not incorporated under these conditions. This material shows good electric conductivity (ρ=500 mΩ cm). By contrast, insulating films with a Li0.1La0.70TiO3 composition corresponding to the Ti4+ species were obtained at high oxygen pressures (>0.05 mbar). For all conditions, textured films were grown with different orientations depending on the temperature and the oxygen pressure. Received: 10 September 1997/Accepted: 24 November 1997  相似文献   

16.
6% 57Fe doped titanium oxide films, prepared by pulsed laser deposition (PLD) on sapphire substrate at 650°C under various vacuum conditions, were characterized mainly by conversion electron Mössbauer spectrometry (CEMS). Two magnetic sextets with hyperfine fields 33 and 29 T, and one doublet were observed in the CEMS spectra of TiO2 films prepared under PO2 = 10?6 and 10?8 torr, which showed ferromagnetism at room temperature, whereas only the doublet of paramagnetic Fe3+ species was observed for the film prepared under PO2 = 10?1 torr.  相似文献   

17.
用磁控溅射在热单晶MgO(100)基片上制备了[FePt/BN]多层膜,经真空热处理后,得到具有垂直取向L10-FePt/BN颗粒膜.X射线衍射结果和磁性测量的结果表明,[FePt(2nm)/BN(0.5nm)]10和[FePt(1nm)/BN(0.25nm)]20多层膜经700℃热处理1h后,均具有较好的(001)取向.[FePt(1nm)/BN(0.25nm)]20垂直矫顽力达到522kA/m,剩磁比达到0.99,开关场分布S达到0.94,FePt晶粒平均尺寸约15—20nm,适合用于将来超高密度的垂直磁记录介质. 关键词: 磁控溅射 垂直磁记录 0-FePt/BN纳米颗粒膜')" href="#">L10-FePt/BN纳米颗粒膜  相似文献   

18.
The magnetic and microstructural properties of Ni-Co films electrodeposited at different cathode potentials were investigated. The compositional analysis revealed that the Ni content increases from 13 at.% to 44 at.% in the films with increasing deposition potential. Magnetic measurements showed that the saturation magnetization, Ms of the films decreased with increase of Ni content as the deposition potential increased. Ms values changed between 1160 emu/cm3 and 841 emu/cm3. The X-ray diffraction revealed that the crystalline structure of the films is a mixture of the predominant face-centered cubic (fcc) and hexagonal closed packed. However, the mixture phase turns to the fcc because of increasing Ni content up to 44 at.% at the highest (−1.9 V) potential by enhancing the intensity of reflections from the fcc phase. The changes observed in the magnetic and microstructural properties were ascribed to the changes observed in the chemical composition caused by the applied different deposition potentials.  相似文献   

19.
XPS depth profiles were used to investigate the effects of rapid thermal annealing under varying conditions on the structural, magnetic and optical properties of Ni-doped ZnO thin films. Oxidization of metallic Ni from its metallic state to two-valence oxidation state occurred in the film annealed in air at 600 °C, while reduction of Ni2+ from its two-valence oxidation state to metallic state occurred in the film annealed in Ar at 600 and 800 °C. In addition, there appeared to be significant diffusion of Ni from the bottom to the top surface of the film during annealing in Ar at 800 °C. Both as-deposited and annealed thin films displayed obvious room temperature ferromagnetism (RTFM) which was from metallic Ni, Ni2+ or both with two distinct mechanisms. Furthermore, a significant improvement in saturation magnetization (Ms) in the films was observed after annealing in air (Ms = 0.036 μB/Ni) or Ar (Ms = 0.033 μB/Ni) at 600 °C compared to that in as-deposited film (Ms = 0.017 μB/Ni). An even higher Ms value was observed in the film annealed in Ar at 800 °C (Ms = 0.055 μB/Ni) compared to that at 600 °C mainly due to the diffusion of Ni. The ultraviolet emission of the Ni-doped ZnO thin film was restored during annealing in Ar at 800 °C, which was also attributed to the diffusion of Ni.  相似文献   

20.
Amorphous nonstoichiometric ZrOx films of different composition have been synthesized by the method of ion-beam sputtering deposition of metallic zirconium in the presence of oxygen at different partial oxygen pressures in the growth zone, and their optical properties have been studied in the spectral range of 1.12–4.96 eV. It is found that light-absorbing films with metallic conductivity are formed at the partial oxygen pressure below 1.04 × 10–3 Pa and transparent films with dielectric conductivity are formed at the pressure above 1.50 × 10–3 Pa. It is shown that the spectral dependences of optical constants of ZrOx films are described well by the corresponding dispersion models: the Cauchy polynomial model for films with dielectric conductivity and the Lorentz–Drude oscillator model for films with metallic conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号