首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
外部噪声和环境温湿度变化对光声池性能的影响是光声光谱技术在实际大气气溶胶吸收测量应用中遇到的主要问题。详细分析了环境温湿度变化引起的共振频率漂移对光声信号的影响,提出了抑制流动噪声和采样泵振动噪声的方法,研制完成了一套测量大气气溶胶吸收的光声光谱系统,探测极限为1.4×10-8 W·cm-1·Hz-1/2。利用NO2气体在532 nm的吸收对光声池进行了标定,并对实际大气气溶胶的吸收特性进行了测量,结果表明光声光谱测量系统可以满足自然悬浮状态下的气溶胶吸收系数的实时测量。  相似文献   

2.
实时在线气体检测在石油化工、现代工业、环境、医学诊断、智能电网中变压器在线监测等领域具有非常重要的意义。光声光谱气体检测技术是一种基于光声效应的气体检测技术,由于其具有检测灵敏度高、选择性强、分辨率高、检测范围宽、可实时在线监测等优点,已被广泛用于痕量气体检测。在光声光谱系统中,光声池是最重要的组成部分,其性能的好坏对于系统检测灵敏度和分辨率有着直接的影响。近些年来,光声光谱气体检测系统主要采用标准圆柱形共振光声池,系统的检测灵敏度和分辨率主要由微音器决定。为了进一步提高光声光谱法对于痕量气体检测的灵敏度和分辨率,对光声池进行深入研究分析,提出一种高灵敏度的椭球形共振光声池。结合气体热动力学和声学理论,利用COMSOL软件中的热声学模块分别对椭球形光声池和传统的圆柱形光声池进行了有限元方法分析,建立了其声学特征模型,并且对光声池的共振频率,光声池谐振腔内的声压分布情况以及声压级大小等声学特性进行了仿真研究。模拟了椭球形光声池的共振频率和声压信号大小与光声池谐振腔长度和中心半径之间的关系,从而优化了光声池的尺寸结构,选取了长度为100 mm,中心半径为5 mm的椭球形光声池最优结构,与相同外部尺寸下的传统圆柱形光声池进行了对比分析。结果表明,椭球形光声池的共振频率为1 340 Hz,处于共振状态时产生的声压信号达到了5.01×10~(-5) Pa,声压级为11 dB,品质因数为70;圆柱形光声池共振频率为1 650 Hz,共振状态下产生的声压信号大小为5.7×10~(-6)Pa,声压级为-13.9 dB,品质因数为66。对比可知,椭球形光声池的共振频率明显小于圆柱形光声池,且最大声压信号是同尺寸圆柱形共振光声池的8.78倍,声压级提高了24.9 dB。由此可知,设计的椭球形共振光声池体积小,声压信号大,检测灵敏度高,光声池的性能有了明显提升,对于光声光谱法用于微痕量气体检测的灵敏度提高有着重要意义。  相似文献   

3.
《光子学报》2021,50(7)
光声池作为光声光谱气体检测系统中的核心器件直接影响系统的检测精度,以经典圆柱形光声池为基础研究对象,利用有限元分析软件,结合压力声学及热粘性声学两种物理场对光声池内的声热耦合过程进行建模,通过仿真对比谐振腔和缓冲腔的几何参数变化对光声池性能的影响,进而确定其最优尺寸。仿真结果表明:谐振腔、缓冲腔的长度和半径均会影响谐振频率和声压。充分考虑对比结果及工业制造难度后,选定谐振腔最佳长度为120 mm,最优半径为3 mm,缓冲腔半径为35 mm。在此基础上,设计了一种谐振腔与缓冲腔为圆角连接的光声池,与同尺寸直角光声池相比,圆角光声池在提高光声信号和降低流动噪声干扰方面更具优势,品质因数提高至1.109倍,池常数增大到3 635.1 Pa·cm/W,声压提高到1.26×10~(-5)Pa。在甲烷气体的浓度检测中,系统灵敏度可达到0.87 ppm,检测结果较理想,符合高灵敏度的要求。因此,圆角连接光声池在性能上有明显提升,可为光声池的优化设计提供参考。  相似文献   

4.
通过对T型光声池内模式分布、温度分布以及边界条件的分析,建立了共振频率与温度关系的数学模型。分析了品质因子温度的关系及其影响因素。在-100~0 ℃范围内对光声池的温度稳定性、共振频率、系统灵敏度进行了测量和分析,结果表明,共振频率随温度的降低而减小,系统的灵敏度受温度影响较小。在-100~0 ℃范围内对不同浓度CO2探测的最小浓度范围为3.2~5.2 mg·m-3,说明该系统可用于痕量气体探测;克服了麦克风低温下灵敏度降低的问题,为低温下进行痕量气体探测提供了一种新的研究方法。  相似文献   

5.
CO和CH_4气体作为判断变压器运行状态的故障气体,对其浓度的探测在变压器维护中具有重要意义.为了准确探测变压器运行过程中产生的CH_4和CO气体浓度,本文利用光声光谱技术,设计了一套基于宽带光源的多组分气体探测系统,和共振型光声系统相比,该系统中所用的非共振型光声池体积小,易加工,池内各处信号强度相同,降低了对声学信号探测器的安装要求.系统的性能通过对CO和CH_4气体的探测进行评估.首先,从理论上分析了信号强度与调制频率呈反比,然后根据宽带光声系统在不同调制频率下的响应,确定系统的最佳调制频率为22 Hz.在最佳调制频率下,根据温度与待测气体光声信号的关系,对光声信号进行温度补偿,消除温度变化对光声信号的影响,进一步提高了系统的稳定性.最后,通过不同浓度的CH_4和CO气体对系统进行标定.实验表明,温度补偿前后,光声信号随温度的漂移分别为0.023 23V/℃和8.383 48×10~(-5) V/℃,通过对不同浓度CH_4和CO气体的探测,系统的线性度分别达到0.995和0.998 4.在一个大气压下,积分时间为1s时,宽带光声探测系统对CO和CH_4气体的探测极限浓度能够达到1μL/L.该系统成本低,线性度好,探测灵敏度符合国标对变压器维护过程中CO和CH_4气体的探测要求.  相似文献   

6.
在405 nm处基于低功率蓝光二极管光声技术探测ppb量级NO_2浓度系统,获取了NO_2有效吸收截面,探讨了水蒸气等气体的测量干扰,通过频率扫描拟合得到了1.35 kHz的谐振频率.采用内部抛光的铝制圆柱空腔作为光声谐振腔(内径为8 mm,长为120 mm),系统优化了腔体、窗片和电源等影响因素,分析了降低本底噪声、提高信噪比的方法,噪声信号可降至0.02μV.设计了两级缓冲结构,显著抑制了流量噪声的影响,提高了系统的稳定性.系统的标定梯度曲线经过线性拟合后的斜率为0.016μV/ppb, R~2为0.998,在60 s平均时间下,系统NO_2探测限为3.67 ppb(3σ).为了证实系统的测量结果,将其与二极管激光腔衰荡光谱系统同步对比测量大气NO_2浓度,二者线性拟合后的斜率为0.94±0.009,截距为1.89±0.18,相关系数为0.87,一致性较好.实验结果表明,该系统实现了ppb量级NO_2浓度的低成本在线探测,可用于NO_2浓度外场的实时检测.  相似文献   

7.
乙炔气体作为判断变压器运行状态的一种故障气体,其浓度的高低反映了变压器的运行状况,因此对其浓度的探测在变压器的维护中具有重要意义。为了准确探测变压器运行过程中产生的乙炔气体浓度,为变压器的维护提供技术参数,针对基于DFB激光器的共振型光声光谱技术痕量乙炔气体检测技术开展研究,对传统的光声光谱探测系统进行改进。根据光声光谱技术的理论可知,光声信号的强度与入射激光的功率成正比,所以在光声池的出射窗口采用一个平面反射镜将红外光再次反射到光声池中以增加入射光功率,增强光声信号强度,进一步提高了光声系统的探测灵敏度。通过一定浓度的乙炔气体在不同调制频率和不同调制深度下光声信号强度的变化,确定光声探测系统的最佳调制频率和最佳调制深度为767 Hz和0.3 mV。利用不同浓度乙炔气体对系统进行标定,然后采用最小二乘法对光声信号与气体浓度进行拟合,二者具有很好的线性度。通过Allan方差计算可知,系统在平均时间达到200 s时,能够达到最低探测极限浓度。实验表明,在一个大气压下,积分时间为10 ms时,改进后的共振型光声光谱探测系统对乙炔气体的最低探测极限浓度达到了0.3 μL·L-1。还将小波去噪技术引入到低浓度下乙炔气体的光声信号处理中,有效消除了低浓度气体光声信号中的噪声,提高了信噪比。设计的共振型光声光谱探测系统操作简单,最低探测浓度符合国标中对变压器维护过程中对乙炔气体的探测需求,在变压器维护领域具有广阔的应用前景。  相似文献   

8.
针对电力系统对六氟化硫电气绝缘设备中气体衍生物的在线高精度探测需要,提出了差分双通道结构的光声池作为光声探测模块,并使用中心波长为2.3μm的分布式反馈(distributed feedback laser, DFB)激光器作为激励光源,搭建了一款工作在高浓度六氟化硫背景气体中的一氧化碳气体传感器.通过光声共振理论模拟和设计,在纯六氟化硫气体中光声池的品质因子为84,相对于在氮气载气中的品质因子提高了约4倍.经实验验证,差分结构光声池的最大气体流速较单共振腔光声池提高了6倍,且具有较强的噪声免疫能力.在对传感器系统的共振频率、气流速度和工作压强等参数优化后,在1 s的积分时间下,获得一氧化碳气体的探测灵敏度为体积分数1.18×10~(–6),对应的归一化噪声等效浓度(1σ)为3.68×10~(–8) cm~(–1)·W·Hz~(–1/2).该传感器的灵敏度高,选择性好且噪声免疫能力强,可以为电力系统中潜在性绝缘故障诊断提供一种在线探测技术,具有重要的应用前景.  相似文献   

9.
许雪梅  李奔荣  杨兵初  蒋礼  尹林子  丁一鹏  曹粲 《物理学报》2013,62(20):200704-200704
NO, NO2是大气污染源中的常见气体, 对环境具有严重的危害性. 为检测污染源中这两种气体的浓度, 构建了成本较低的基于红外热辐射光源的光声光谱气体检测系统. 分析计算得到了NO, NO2 在2500–6667 nm波段吸收谱线. 通过建立光声传输线RLC振荡电路模型和仿真得到品质因数、声压大小与谐振腔长、内腔半径以及调制频率的关系, 据此设计了光声池几何结构. 实验表明该系统所测得的光声信号与气体浓度有很好的线性关系, 并且对NO, NO2气体极限检测灵敏度分别达到4.01 和1.07 μL. 通过调节激光发射波长和选取滤波片, 该系统还可用于其他微量气体的浓度检测. 关键词: 大气污染 光声光谱 气体检测  相似文献   

10.
基于光声光谱原理的气体浓度检测是光声技术最典型的应用。与其他光谱气体检测方法相比,光声气体检测技术主要具有结构简单、探测器不受波长限制、零背景噪声、成本低等优点。它在气体检测领域得到了广泛的认可和应用。作为光声光谱气体检测系统的核心部件,光声池的性能将直接影响系统的检测结果。因此,光声池的优化设计已成为该领域的研究热点。当前,针对光声池的优化主要是基于系统静态条件,关于光声池腔内气体流动性能及动态时间响应的研究报道较少。由于光声池在动态检测条件下的气体扰动及系统检测噪声具有一定影响,因而对于光声池的相关参数进行进一步的探索与优化,改善光声池腔内气体流场分布、动压特性及其气体浓度平衡时间对于提升光声光谱的气体检测性能具有重要意义。为此,以传统的圆柱形光声池为基础,基于三维流场数值模拟方法建立了光声池腔内流场的稳态和瞬态模拟模型,计算获得了光声池腔内气体流场分布及其气体浓度平衡响应规律,结果表明,减少光声池腔内气流流速及优化光声池中的过渡结构将会改善气流引发的动压波动以及缩短腔内气体浓度调节时间。以光声池的缓冲腔与谐振腔过渡处圆角、辅助孔数量、辅助孔半径、辅助孔中心圆半径以及进气速度5个参...  相似文献   

11.
工作环境是光声光谱气体检测系统在工业现场应用的重要影响因素.实验发现,待测气体湿度对电容式微音器灵敏度影响显著,导致现有光声光谱气体榆测系统测试结果漂移.文章提出一种气体湿度影响消除方法,在光声腔中安装扬声器,以扬声器信号幅值作为声感应器件灵敏度的自适应表征,对光声信号幅值作自行修正,有效克服电容式微音器声信号榆测中灵...  相似文献   

12.
周彧  曹渊  朱公栋  刘锟  谈图  王利军  高晓明 《物理学报》2018,67(8):84201-084201
近年来,气候变化对地球的生态环境产生严重影响,而大气温室气体在气候变化中具有重要的作用.一氧化二氮(N_2O)作为一种重要的温室气体,其浓度变化对大气环境产生重要影响,因此对其浓度的探测在大气环境研究中具有重要意义.本文开展了基于中国自主研发的7.6μm中红外量子级联激光的共振型光声光谱探测N_2O的研究,建立了N_2O光声光谱传感实验系统.此系统在传统的光声光谱探测的基础上优化改进,采用双光束增强的方式,增加了有效光功率,进一步提高了系统的探测灵敏度.探测系统以1307.66 cm~(-1)处的N_2O吸收谱线作为探测对象,结合波长调制技术对N_2O气体进行探测研究.通过对一定浓度的N_2O气体在不同调制频率和调制振幅的光声信号的探测,确定了系统的最佳调制频率和调制振幅分别为800 Hz和90 mV.在最优实验条件下对不同浓度的N_2O气体进行了测量,获得了系统的信号浓度定标曲线.实验表明,在锁相积分时间为30 ms时,系统的浓度探测极限为150×10~(-9).通过100次平均后,系统噪声进一步降低,实现了大气N_2O的探测,浓度探测极限达到了37×10~(-9).  相似文献   

13.
可调谐半导体激光光谱技术(TDLAS)是光谱检测技术的一个分支,具有高灵敏度、高分辨率、实时监测、便携性好、小型化等优点,在工业环保、医疗检测、气象监测等领域得到了广泛应用。TDLAS气体传感器的测量精度与标定曲线密切相关,标定时,常用最小二乘法对标定曲线进行多项式拟合,但最小二乘法是以绝对误差的最小平方和作为评价标准,无法对相对误差进行约束,在低浓度量程下TDLAS气体传感器的标定曲线相对误差偏大,限制了标定量程。推导了光强透射率对数与气体浓度关系式作为目标函数,提出了基于相对误差意义下的最小二乘法,迭代方法采用高斯-牛顿迭代法(Gauss-Newton iteration method),实验以雅士林DHS-100恒温恒湿箱来产生大量程范围的水汽标定浓度,Vaisala HMT337在线湿度检测仪的测量值作为标定浓度,自主研发的TDLAS湿度传感器选择波数为7 306.752 1 cm-1的水汽吸收峰,气室的光路长为50 mm,对1%~50%VOL的水汽浓度进行了拟合标定,对比了最小二乘法与相对误差最小二乘法的标定拟合结果。实验结果表明:采用最小二乘法拟合时,在低浓度量程下会出现较大的相对误差,高浓度量程下相对误差逐渐减小,无法保证整个大量程下测量精度要求;采用相对误差最小二乘法拟合时,在整个大量程范围下的相对误差波动比较小,相对误差分布曲线比较平稳,最大相对误差和相对误差标准差都远小于最小二乘法的拟合结果;以Ratio-C关系式作为目标函数,采用相对误差最小二乘法进行拟合标定时,最大相对误差为0.049 4,相对误差标准差为0.023 7,远优于最小二乘法的拟合结果,符合TDLAS传感器测量精度要求,验证了相对误差最小二乘法的标定算法可靠性,提高了TDLAS气体传感器的测量精度。  相似文献   

14.
The simultaneous dual-frequency operation of a resonant photoacoustic gas sensor based on the differential mode excitation photoacoustic (DME-PA) technique is presented. The DME-PA method uses the excitation of two different modes in a resonant photoacoustic cell and the gas concentration is derived from the amplitude ratio of these acoustic modes. With the simultaneous dual-frequency excitation, the amplitude ratio needed by the DME-PA technique is obtained instantaneously, in contrast to the sequential modulation scheme where additional time delays are introduced by changing the modulation frequency. For a given excitation power reaching the photoacoustic cell, and a total acquisition time longer than 7 s, the simultaneous modulation scheme provides an improved measurement uncertainty compared to the sequential scheme. The proposed sensor allows measuring water vapour with a ±150 ppmV uncertainty using current-modulated near-infrared LEDs and a 15 s total acquisition time.  相似文献   

15.
腔增强吸收光谱技术具有实验装置相对简单、灵敏度高、环境适应性强等特点,是高灵敏吸收光谱技术的重要分支之一,在其应用过程中,腔镜反射率是影响其测量准确性的重要因素。利用2.0 μm可调谐二极管激光器作为光源搭建了一套腔增强吸收光谱测量系统,使用两片反射率为99.9%的高反镜作为腔镜,以CO2气体在5 001.49 cm-1处的吸收谱线作为研究目标,对两种简单实用的腔镜反射率标定方法进行了对比研究。第一种标定方法利用已知程长多通池作为参考池,通过测量谐振腔和多通参考池的输出吸收信号,比较二者的吸收率推导出腔增强系统中的有效吸收路径,然后通过镜片反射率和有效吸收路径的关系对腔镜反射率进行标定;第二种标定方法根据理想气体状态方程得到气体分子数密度,并结合数据库中的谱线线强值,实现了对腔镜反射率进行标定。结果表明,方法一中积分腔与参考池测得信号的积分吸收面积之比为10.5,经过多次测量并计算得到积分腔的有效吸收路径与镜片的反射率分别为302.65 m和99.85%,得到大气中CO2气体的浓度为0.037 3%,与实际大气CO2的含量相符合,验证了此方法的准确性;该方法的优点是不受样品浓度影响,但因引入新的参考池,需要两池中气体的压强和温度都保持一致,此方法适用于开放式的腔体结构。方法二中测得大气中CO2分子位于5 001.49 cm-1处吸收光谱,并结合大气中CO2气体的分子数密度N为9.099×1015 molecule·cm-3,Hitran数据库中该条谱线线强为3.902×10-22 cm·molecule-1,计算得到镜片反射率约为99.84%;此方法优点是结构相较前一种方法更简单,但需要已知被测气体的分子数密度,因此在配置气体的过程中浓度、压力的误差会影响腔镜反射率的标定。由此可见两种镜片标定方法均可精确实现对腔镜反射率的标定,根据两种方法的特点,在实际应用中可选取相应适合的方法作为参考。  相似文献   

16.
二氧化碳(CO2)是植物光合作用的原材料,也是一种温室气体,其过量地排放会影响动植物的生态环境。在碳达峰、碳中和的背景下,研制高灵敏度的CO2检测装置具有重要意义。为了监测大气环境中CO2含量的变化,设计了一种长光程共振式CO2气体光声传感器,并以此搭建了光声检测装置。以中心波长为2 004 nm的分布式反馈激光器(DFB)作为激发光源,激光射入由漫反射材料制成的球型吸收腔,在腔内多次反射以增加气体的吸收路径。吸收腔外部被两个高热传导率的铝制半球包裹,降低由池体吸收光能后产生的热噪声。吸收腔上耦合一根声学管,当其工作在一阶纵向共振模态时,光声信号被放大,在管子末端达到极大值。为了进一步增大光声信号,通过饱和加湿样品的方式来加快CO2气体的弛豫速率,加湿后的样品产生的光声信号是干燥样品的2.1倍左右。使用一系列浓度的湿润CO2样品标定光声检测装置,结果表明,光声信号与浓度之间呈现良好的线性关系。在此基础上,通过对标准气体的检测实验,验证了装置的准确性与稳定性...  相似文献   

17.
声传感器和光声池是激光光声光谱技术的核心组件。结合光纤迈克耳孙干涉仪、相位载波解调技术和纵向共振光声池,提出一种共光声池腔的芯轴型空气衬底光纤麦克风。光纤麦克风中的铜毛细管被用作光声池的共振腔,传感臂由10 m长的超细光纤缠绕在铜毛细管上构成,参考臂为5 cm长的短臂且已进行隔声隔振处理。基于结构共振频率稳定的特点,优化光纤麦克风的共振频率,使其略低于光声池的一阶纵向共振频率,以实现准双共振。实验结果表明,麦克风在共振频率为1443 Hz处的最小可检测声压为0.69μPa√Hz。在1 kHz处,声压电压响应线性度为99.98%(5 mPa~3 Pa),动态范围为112.52 dB。该光纤麦克风适用于高温、易爆和高电磁干扰等特殊环境下痕量气体的高精度检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号