首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Different layers in the construction of ultrasonic receiving transducers have been identified as a significant factor in the frequency response of these transducers. The discussion has been extended to the reception of signals through the layers of a process vessel-wall to determine whether the resulting system can be made independent of frequency over a significant spectral range and whether a system can be identified that is essentially independent, in its spectral response, to the thickness of one of the layers (the couplant to the vessel). While the present results are limited to a frequency range of 0–2 MHz, they can readily be extended to other frequency ranges. These computations have as variables the backing material, the transducer material, a wear plate, one or two quarter wavelength layers, the couplant and the structure of the vessel wall. The effect of thin bonding layers for the quarter wavelength plates is also briefly considered. As may have been expected each extra layer introduced into the system produces its own series of resonances. The case of a number of quarter wavelength layers can give a flat frequency response over almost a megahertz of bandwidth but great care needs to be taken with the bonding layers. A system in which the thickness of the couplant had little effect on the overall spectral response was not found.  相似文献   

2.
A Cochran  P Reynolds  G Hayward 《Ultrasonics》1998,36(10):969-977
A stacked ultrasonic transducer comprises multiple individual layers connected mechanically in series and electrically in parallel to reduce the fundamental thickness mode resonance to a frequency corresponding to the transit time of the complete stack and the electrical impedance to a value which corresponds to that of the layers of the stack in parallel. In turn, this allows lower frequency resonant operation than would be possible with a single layer, and facilitates electrical impedance matching to typical transmission circuitry. On transmission, an ideal stack of uniform layers will have an output amplitude larger than that of the equivalent single layer by a factor equal to the . However, using conventional signal amplification circuitry on reception, the output voltage amplitude will be smaller than that of the equivalent single layer by a similar factor. In the past, stacks have commonly been assembled from layers of conventional piezoceramic material but more recently there have been reports of stacks of 1–3 piezocomposites and it is this type that is considered here. The work described in this paper is motivated by the need to operate at frequencies lower than are possible using conventional piezocomposite fabrication technology. Progress in comparison of experimental and simulated results is outlined and the highlights of a theoretical design study are presented. These show that although the general behaviour of a stacked structure is easily predicted, a rigorous theoretical analysis is essential to understand the detail of even a limited range of possible designs.  相似文献   

3.
邓勇  陈康  李继扬 《应用光学》2017,38(2):316-320
提出一种基于正交偏振双纵模的氦氖激光器纳米测尺系统,将双折射元件插入He-Ne激光器谐振腔内产生频率分裂效应,使激光器变成了频差可调的双频激光器。运用频率分裂、模竞争、双纵模功率调谐等激光物理效应和设定浮动阈值,研制了新型的激光器纳米测尺。以激光波长为尺子,具有可溯源性,在没有任何电细分的条件下达到了纳米量级的分辨率,与激光干涉仪的比对实验表明,该系统的分辨率为79 nm,量程为15 mm,线性度为5.4×10-5,标准差为380 nm。  相似文献   

4.
A hybrid magnetostrictive-piezoelectric barrel-stave projector is designed and developed. The new type transducer is driven by the union of rare-earth giant magnetostrictive material Terfenol-D and PZT piezoelectric ceramic. Combining the advantages of low frequency performance within a compact size, it proves that the hybrid projector has a much broader band and higher sound power than that with single magnetostrictive or piezoelectric driver by the simulated and measured results. The prototype of the hybrid projector has a size of 88 mm in outside diameter and 316 mm in length, with an underwater resonant frequency of 1.30 kHz, Q factor of 1.43 for -3 dB bandwidth, and transmitting voltage response level of 135.1 dB at the resonant frequency.  相似文献   

5.
赵志伟  莫喜平  柴勇 《声学学报》2021,46(6):1242-1249
建立了弯曲圆盘换能器镜像虚源等效模型,利用脉动球源互作用原理对弯曲圆盘与其镜像虚源的互辐射作用进行理论分析,给出了互辐射阻抗及系统谐振频率的数学表达。提出了虚源互作用的低频换能器设计思想,将刚性反射板引入弯曲圆盘换能器临近辐射面的声场中,通过理论分析、有限元模拟和样机实验研究了低频换能器谐振频率与主要结构参数之间的关系。结果表明,弯曲圆盘与镜像虚源间的互辐射作用可以有效降低换能器的谐振频率,当反射板直径与弯曲圆盘辐射面直径相当时,谐振频率可降低至其自身谐振频率的50%以下;当反射板直径为弯曲圆盘辐射面直径2倍时,谐振频率可降低至37%。   相似文献   

6.
基于局域共振单元实现声子晶体低频多通道滤波   总被引:2,自引:0,他引:2       下载免费PDF全文
程聪  吴福根  张欣  姚源卫 《物理学报》2014,63(2):24301-024301
从理论上提出一种由局域共振单元组成的声子晶体低频多通道滤波模型.在二维三组元局域共振声子晶体中引入不同填充率的共振单元构成波导结构,通过有限元法计算出其能带结构、透射曲线和透射场图.结果显示:这种设计能够在低频带隙范围内不同填充率散射体的共振频率附近产生新的分立模,且这些分立模能够使相应的声波在声子晶体中沿波导方向传播;这些分立模只与相应的共振单元相关,抗干扰能力强.所得结果为低频多通道滤波器的设计提供了一种新的理论依据.  相似文献   

7.
水中气泡之间的声相互作用   总被引:7,自引:0,他引:7       下载免费PDF全文
钱祖文 《物理学报》1981,30(4):442-447
单个气泡的声衰减的实验结果可以用热传导粘滞和辐射损失来解释,但对于气泡层中(这里有许多气泡)的实验来说,上述机理却不能解释。因为根据这些机理算得的理论值比实验值小很多,这一问题三十多年来尚未解决。本文考虑气泡之间的声相互作用,算得的相互作用场和原始入射场有90°的相位差,这等效于在每个气泡上附加了一项阻力,从而使其阻尼增大很多。应用本文理论与上述实验结果比较,两者符合得很好。本文理论也指出,声相互作用并不改变气泡的共振频率,只是使其共振曲线展宽。当声波频率低于共振频率时,气泡的伴振质量增大,劲度减小。当频率高于共振频率时,情况则相反。 关键词:  相似文献   

8.
磁致伸缩换能器辐射板形状对声场分布的影响   总被引:1,自引:0,他引:1  
磁致伸缩换能器可作为热声制冷机的声源装置,辐射板的形状直接影响声压输出效率,从而影响制冷效果。为提高换能器工作效率、减小换能器体积,辐射板需在Terfenol-D棒的激励下产生大振幅、高频率的活塞振型。针对这一问题,应用ATILA软件分析了磁致伸缩换能器辐射板形状对谐振腔振动幅频特性的影响以及对谐振腔内声场分布的影响。结果表明:相同激励条件下,凹球面辐射板出现活塞振型时振幅最大,对应谐振腔中声压幅值最高;谐振腔端面形状为凹球面时,具有聚焦声压幅值的作用;端面形状为凹发射端-凸反射端组合的谐振腔内声压幅值最高。以上结论为合理设计辐射板、谐振腔两端面组合形状提供了参考。  相似文献   

9.
宋明鑫  张碧星 《应用声学》2021,40(2):263-268
声表面波器件的级联有限元模拟方法是从整体结构中分离出若干独立的基本单元,通过基本单元边界矩阵的级联实现有限长器件结构的模拟。在实际设计中,通过优化叉指换能器的指条周期,激发出不同波长的声表面波,调整声表面波器件的谐振频率,这导致级联有限元模拟方法存在频繁的单元建模与数据传输过程。为提高模拟效率,该文提出了一种波长(频率)变化时的级联有限元快速模拟方法。首先分析了不同波长对应单元系统矩阵间的关系,引入参考波长及波长变化因子,建立单元系统矩阵与波长之间的简易函数关系。接着利用参考波长的有限元模型快速计算出不同波长对应的单元系统矩阵,避免了多次单元建模与大量数据传输过程。最后利用边界矩阵的级联计算器件的频域响应,证明了该方法的有效性。  相似文献   

10.
Volumetric oscillation of multiple cavitation bubbles in an ultrasonic standing-wave field is investigated spatially through the intensity measurements of scattered light from bubbles changing the measuring position in the direction of sound propagation. When a thin light sheet finer than half of wavelength of sound is introduced into the cavitation bubbles, at an antinode of sound pressure the scattered light intensity oscillates. The peak-to-peak light intensity corresponds to the number of the bubbles which contribute to the sonochemical reaction because the radius for oscillating bubbles at pressure antinodes is restrictive in a certain range due to the shape instability and the action of Bjerknes force that expels from the antinode bubbles that are larger than the resonant size. The experimental results show that the intensity waveform of oscillating scattered light measured at the side near the sound source is similar to the waveform as seen in a single-bubble experiment. The peak-to-peak light intensity for the scattered light waveform is low at the side near the sound source where the progressive wave is dominant, while at the side near the water surface far from the sound source the intensity is relatively high and has periodic structure corresponding to the periodicity of half wavelength from the standing wave. These tendencies of high intensity near the water surface and the periodicity correspond to the periodic luminescent stripes seen in images of luminescence in an ultrasonic standing wave as reported by Hatanaka et al. [Jpn. J. Appl. Phys. 39 (2000) 2962]. The present method of light scattering is promising for evaluating spatial distribution of violently oscillating cavitation bubbles which effect sonochemical reactions.  相似文献   

11.
Lin Shuyu 《Ultrasonics》1995,33(6):445-448
Langevin ultrasonic transducers are widely used in high-power ultrasonics and underwater sound. In ultrasonic cleaning, a matching metal horn rather than a metal cylinder is used as the radiator in order to enhance the radiating surface and improve the acoustic matching between the transducer and the processed medium. To raise the effect of ultrasonic cleaning, the standing wave in the cleaning tank should be eliminated. One method to eliminate the standing wave in the tank is to use the multifrequency ultrasonic transducer. In this paper, the Langevin ultrasonic horn transducer, with two resonance frequencies, is studied. The transducer consists of two groups of piezoelectric ceramic elements: the back metal cylinder, the middle metal cylinder and the front matching metal horn. The vibrational modes of the transducer are analysed, and resonance frequency equations of the transducer in the half-wave and the all-wave vibrational modes are derived. According to the resonance frequency equations, transducers with two resonance frequencies are designed and made. The resonance frequencies, the effective electromechanical coupling coefficients and the equivalent electric impedances of the transducers are measured. It is shown that the measured resonance frequencies are in good agreement with the computed results, and the transducer can be excited to vibrate at two resonance frequencies, which correspond to the half-wave and the all-wave vibrational modes of the transducer.  相似文献   

12.
One method for deducing the strength of an acoustic source distribution from measurement of the radiated field involves the inversion of the matrix of frequency response functions relating the field measurement points to the strengths of a number of point sources used to represent the source distribution. In practice, the frequency response function matrix to be inverted may very often be ill-conditioned. This ill-conditioning will also often result in an ill-posed problem and thus regularization algorithms are used to produce reasonable solutions. For this purpose, Tikhonov regularization has been applied, and generalized cross-validation (GCV) has been introduced as an effective method for determining the proper amount of regularization without prior knowledge of either the source distribution or the contaminating errors. In the present work, the emphasis is placed on the relationship between the spatial resolution of the reconstructed source distribution and the small singular values of the frequency response function matrix to be inverted. However, the use of Tikhonov regularization often suppresses the effect of small singular values and these are in turn often associated with high spatial frequencies of the source distribution. Thus, the process of regularization produces a useful estimate of the acoustic source strength distribution but with a limited spatial resolution. Furthermore, in the field of Fourier acoustics, the spatial resolution of the reconstructed source distribution is usually limited by the wavelength of the radiation. This paper expresses the relationship between estimation accuracy, spatial resolution, noise-level and source/sensor geometry, when a range of inverse sound radiation problems are regularised using Tikhonov regularization with GCV. The results presented form the basis of guidelines that enable the reconstruction of acoustic source strength with a resolution that is finer than the intrinsic half-wavelength limit.  相似文献   

13.
This work reports performance improvements of air-coupled capacitive micromachined ultrasonic transducers (CMUTs) using resonant cavities. In order to perform this work, we have designed and manufactured a CMUT employing multi-user microelectromechanical systems (MEMS) processes (MUMPs). The transducer was designed using Helmholtz resonator principles. This was characterised by the dimensions of the cavity and several acoustic ports, which had the form of holes in the CMUT plate. The MUMPs process has the advantage of being low cost which allows the manufacture of economic prototypes. In this paper we show the effects of the resonant cavities and acoustic ports in CMUTs using laser Doppler vibrometry and acoustical measurements. We also use Finite Element (FE) simulations in order to support experimental measurements. The results show that it is possible to enhance the output pressure and bandwidth in air by tuning the resonance frequency of the plate (fp) with that of the Helmholtz resonator (fH). The experimental measurements show the plate resonance along with an additional resonance in the output pressure spectrum. This appears due to the effect of the new resonant cavities in the transducer. FE simulations show an increase of 11 dB in the output pressure with respect to that of a theoretical vacuum-sealed cavity MUMPs CMUT by properly tuning the transducer. The bandwidth has been also analyzed by calculating the mechanical Q factor of the tuned CMUT. This has been estimated as 4.5 compared with 7.75 for the vacuum-sealed cavity MUMPs CMUT.  相似文献   

14.
The performance of an ultrasound reactor chamber relies on the sound pressure level achieved throughout the system. The active volume of a high frequency ultrasound chamber can be determined by the sound pressure penetration and distribution provided by the transducers. This work evaluated the sound pressure levels and uniformity achieved in water by selected commercial scale high frequency plate transducers without and with reflector plates. Sound pressure produced by ultrasonic plate transducers vertically operating at frequencies of 400 kHz (120 W) and 2 MHz (128 W) was characterized with hydrophones in a 2 m long chamber and their effective operating distance across the chamber’s vertical cross section was determined. The 2 MHz transducer produced the highest pressure amplitude near the transducer surface, with a sharp decline of approximately 40% of the sound pressure occurring in the range between 55 and 155 mm from the transducer. The placement of a reflector plate 500 mm from the surface of the transducer was shown to improve the sound pressure uniformity of 2 MHz ultrasound. Ultrasound at 400 kHz was found to penetrate the fluid up to 2 m without significant losses. Furthermore, 400 kHz ultrasound generated a more uniform sound pressure distribution regardless of the presence or absence of a reflector plate. The choice of the transducer distance to the opposite reactor wall therefore depends on the transducer plate frequency selected. Based on pressure measurements in water, large scale 400 kHz reactor designs can consider larger transducer distance to opposite wall and larger active cross-section, and therefore can reach higher volumes than when using 2 MHz transducer plates.  相似文献   

15.
声传感器和光声池是激光光声光谱技术的核心组件。结合光纤迈克耳孙干涉仪、相位载波解调技术和纵向共振光声池,提出一种共光声池腔的芯轴型空气衬底光纤麦克风。光纤麦克风中的铜毛细管被用作光声池的共振腔,传感臂由10 m长的超细光纤缠绕在铜毛细管上构成,参考臂为5 cm长的短臂且已进行隔声隔振处理。基于结构共振频率稳定的特点,优化光纤麦克风的共振频率,使其略低于光声池的一阶纵向共振频率,以实现准双共振。实验结果表明,麦克风在共振频率为1443 Hz处的最小可检测声压为0.69μPa√Hz。在1 kHz处,声压电压响应线性度为99.98%(5 mPa~3 Pa),动态范围为112.52 dB。该光纤麦克风适用于高温、易爆和高电磁干扰等特殊环境下痕量气体的高精度检测。  相似文献   

16.
高频聚焦换能器声场的激光测量法   总被引:3,自引:0,他引:3       下载免费PDF全文
本文描述了一种使用激光测振技术测量高频聚焦换能器声场布的方法,并给出了使用该方法对一种高频聚换能器进行测量的结果,通过理论计算对结果的正确性进行了验证。  相似文献   

17.
研究了一种将多个椭圆弯张壳体在短轴方向进行机械叠合的超低频弯张换能器,每个弯张壳体采用超磁致伸缩材料进行驱动。推导了多个叠合壳体的等效电路,利用支路阻抗方法得到了换能器频率和阻抗的方程表达式。针对多个壳体叠合的结构复杂性,采用有限元方法计算并分析了叠合壳体换能器的多个结构点的振动位移分布,通过平动位移分布设计了活塞辐射面的结构参数。将有限元方法计算的换能器在空气中和水中的谐振频率与等效电路法计算的结果进行了对比,符合较好。研制了6个壳体叠合的超低频弯张换能器样机,换能器外形尺寸为Φ230×630 mm,重量为39 kg。换能器经湖上试验,水中谐振频率130 Hz,最大发送电流响应161.1 dB,最大发射声源级为180.4 dB,实现了超低频、小尺寸的发射能力。   相似文献   

18.
Pulse techniques for the measurement of ultrasonic absorption over a wide frequency bandwidth are limited by the narrow band nature of conventional piezoelectric transducers. This problem can be overcome if the piezoelectric devices are operated as thick elements. In this paper the insertion characteristics of transducers operating in this mode are determined. The compromise between system sensitivity, bandwidth and noise generation in receiving circuits is examined.It is shown that high voltage generators with rise times of a few nanoseconds are required to drive thick transmission transducers. The design of suitable generators, based on avalanche operation of one or more bipolar transistors is described in detail. It is concluded that exciting signals of sufficient amplitude and short enough rise-time could be generated for absorption measurements to be made over at least two decades of frequency with a dynamic range of 100 dB without a change of transducer.  相似文献   

19.
李胜勇  饶德虎  沈中华  倪晓武 《光子学报》2014,39(12):2263-2267
采用压电陶瓷水听器对液体中激光等离子体声波进行了实验研究.利用小波变换对不同激光能量、不同作用金属物质、不同激光波长下检测的声波信号进行了频谱特性分析.结果表明:液体中激光等离子体声波的频率分布范围为0~150 kHz,激光能量、金属物质与激光波长的改变对声波频率范围并没有太大的影响|小波分解后,低频a6级信号的能量占总能量的绝大部分,所占比例随着金属离化能的增加而减少|信号的主要频率成分为0~10 kHz,集中在a6级,峰值频率为5 kHz.  相似文献   

20.
A reflection non-contact ultrasonic microscope system working both in amplitude and phase difference modes at 2 MHz has been developed using an air-coupled concave transducer made of piezoelectric polymer films of poly(vinylidene fluoride/trifluoroethylene) [P(VDF/TrFE)]. The transducer is composed of three 95 μm-thick P(VDF/TrFE) films stacked together, each of which is activated electrically in parallel by a driving source. The transducer has a wide aperture angle of 140° and a focal length of 10 mm. The measured two-way transducer insertion loss is 80 dB at 1.83 MHz. Despite 20 dB higher insertion loss than that estimated from Mason’s equivalent circuit, we have obtained clear amplitude acoustic images of a coin with transverse resolution of 150 μm, and clear phase difference acoustic images of the rough surface of a paper currency bill with depth resolution of sub-micrometer. Using two planar transducers of P(VDF/TrFE), we have also successfully measured in through-transmission mode the sound velocity and absorption of a 3 mm-thick silicone-rubber plate. The present study proves that, owing to its low acoustic impedance and flexibility, P(VDF/TrFE) piezoelectric film is very useful for high frequency acoustic imaging in air in the MHz range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号