首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
桑为民  李凤蔚  鄂秦 《计算物理》2002,19(6):557-560
描述了一种基于直角叉树网格的Euler和N-S方程自适应算法.由于考虑了粘性的作用,提出并使用了四边形叉树混合网格的方法,在几何表面附近生成贴体的四边形网格,外流场使用直角叉树网格.采用中心有限体积法,对Euler及N-S方程进行数值求解,对N-S方程的计算中加入了B-L代数湍流模型.在流场中,运用了网格自适应算法,提高了数值计算对激波、流动分离等特性的捕捉和分辨能力.采用上述方法,数值分析了单段和多段翼型的绕流问题.  相似文献   

2.
提出一个求解二维无粘Lagrange流体力学方程的中心型有限体积方法.采用特征理论求解网格节点处的速度及压力,并利用这些物理量更新节点位置及计算网格界面通量.方法适用于结构网格与非结构网格.典型数值实验的结果表明,格式具有较好的收敛性、对称性、能量守恒性及鲁棒性,且能自然地求解多物质流动问题.  相似文献   

3.
二维保单调保守恒插值算子   总被引:1,自引:0,他引:1  
基于一个一维保单调保守恒插值算子,利用不完全双二次插值提出一个二维保单调保守恒插值算子.从插值逼近角度,通过几个数值实验验证该插值算子有效.用得到的二维插值算子作为结构网格自适应加密(structured adaptive mesh refinement,SAMR)算法中的细化插值算子,求解几个二维Euler方程数值例子,结果表明,提出的二维插值算子有效.  相似文献   

4.
刘学强  伍贻兆  夏健 《计算物理》2002,19(4):357-361
将多重网格法运用于非结构网格.网格是通过聚合法得到的,网格之间是相互关联的.方程的求解采用Jamson的有限体积法.给出了二维、三维情况的数值算例.  相似文献   

5.
求解Euler方程的隐式无网格算法   总被引:1,自引:1,他引:0  
陈红全 《计算物理》2003,20(1):9-13
研究了求解Eluer方程的稳式无网格算法,用点云离散计算区域,代替通常的网格划分;在当地点云上,引入二次平方极小曲面逼近计算空间导数,用Roe的近似Riemann解确定通量;并用LU-SGS算法求解离散得到的Euler方程稳式时间后差联立方程组,数值模拟了二维翼型跨音速绕流,由于无网格算法区域离散只涉及点云,具有灵活性,适合处理复杂的气动外形。  相似文献   

6.
Euler方程某些问题的解具有自相似特点,可以使用更准确的方法求解.提出了两种数值方法,分别称为自相似和准自相似方法,新方法可以使用现有守恒律方程的数值格式,无须设计特殊方法.对一维激波管问题、二维Riemann问题、激波反射以及激波折射问题进行了数值计算.对自相似Euler方程,一维计算结果显示数值解基本等同于精确解,二维结果也比现有文献计算的结果有更高的分辨率.对准自相似Euler方程,新方法可以求解不具有自相似性但接近自相似的问题,并在计算时间足够长时可以取得自相似Euler方程的效果.数值求解自相似Euler方程对自相似问题的研究,高分辨率、高精度格式的设计乃至Euler方程的精确解都有重要启示.   相似文献   

7.
计算二维静电场的非正交有限差分算法   总被引:1,自引:0,他引:1  
汪琛  王保平 《计算物理》1997,14(3):305-310
讨论了计算二维维静电场的非正交有限差分算法,给出了数值计算公式,通过对一些实例的以及与理论解的比较,结果表明非正交有限差分算法具有数值网格的合的特点,只要较少用网格就可以达到较高的精度,是求解复杂边界情况下二维静电问题的一种有效方法。  相似文献   

8.
提出一种求解二维拉氏可压缩流体力学方程的中心型二阶精度有限体积方法.利用特征理论构造网格节点处的局部近似演化算子,算子用来求解网格节点处的速度及压力,利用这些物理量更新节点位置及计算网格界面通量.通过结合一定的重构方案,该方法达到时、空二阶精度,并且形式简单、计算量小,适用于结构网格与非结构网格.典型数值实验表明,本文格式具有良好的收敛性、对称性及鲁棒性,且能自然地求解多物质流动问题.  相似文献   

9.
钱炜祺  蔡金狮  任斌 《计算物理》2002,19(6):512-516
在用有限控制体积法对二维稳态热传导问题进行成功数值模拟的基础上,首先介绍了处理二维稳态热传导逆问题的两种方法:灵敏度法和伴随方程法;然后分别用这两种方法对一典型的圆环域边界条件反演问题进行了计算,并就测量误差对反演结果的影响做了初步分析.结果表明,灵敏度法和伴随方程法都是求解二维稳态热传导逆问题的有效方法.  相似文献   

10.
应用笛卡尔非结构切割网格进行外挂物投放的数值模拟   总被引:5,自引:0,他引:5  
桑为民  李凤蔚  鄂秦 《计算物理》2002,19(3):268-272
描述了一种新的网格生成技术,即笛卡尔非结构切割网格技术,采用叉树数据结构,完成了几种单段和多段翼型以及三维机翼的网格生成.应用中心有限体积法,对其绕流问题进行Euler方程数值模拟,并将计算结果与实验数据进行对比.在机翼绕流数值模拟的基础上,求解出机翼带外挂物的分离投放的流场计算问题.  相似文献   

11.
通过比较间断Galerkin有限元方法(DGM)和有限体积方法(FVM),提出"静态重构"和"动态重构"的概念,进一步建立基于静动态"混合重构"算法的三阶DG/FV混合格式.在DG/FV混合格式中,单元平均值和一阶导数由DGM方法"动态重构",二阶导数利用FVM方法"静态重构";在此基础上,构造高阶多项式插值函数,得到...  相似文献   

12.
The fluid dynamic equations are discretized by a high-order spectral volume (SV) method on unstructured tetrahedral grids. We solve the steady state equations by advancing in time using a backward Euler (BE) scheme. To avoid the inversion of a large matrix we approximate BE by an implicit lower–upper symmetric Gauss–Seidel (LU-SGS) algorithm. The implicit method addresses the stiffness in the discrete Navier–Stokes equations associated with stretched meshes. The LU-SGS algorithm is then used as a smoother for a p-multigrid approach. A Von Neumann stability analysis is applied to the two-dimensional linear advection equation to determine its damping properties. The implicit LU-SGS scheme is used to solve the two-dimensional (2D) compressible laminar Navier–Stokes equations. We compute the solution of a laminar external flow over a cylinder and around an airfoil at low Mach number. We compare the convergence rates with explicit Runge–Kutta (E-RK) schemes employed as a smoother. The effects of the cell aspect ratio and the low Mach number on the convergence are investigated. With the p-multigrid method and the implicit smoother the computational time can be reduced by a factor of up to 5–10 compared with a well tuned E-RK scheme.  相似文献   

13.
By comparing the discontinuous Galerkin (DG) methods, the k-exact finite volume (FV) methods and the lift collocation penalty (LCP) methods, a concept of ‘static reconstruction’ and ‘dynamic reconstruction’ was introduced for higher-order numerical methods in our previous work. Based on this concept, a class of hybrid DG/FV methods was presented for one-dimensional conservation law using a ‘hybrid reconstruction’ approach. In the hybrid DG/FV schemes, the lower-order derivatives of the piecewise polynomial are computed locally in a cell by the traditional DG method (called as ‘dynamic reconstruction’), while the higher-order derivatives are re-constructed by the ‘static reconstruction’ of the FV method, using the known lower-order derivatives in the cell itself and in its adjacent face neighboring cells. In this follow-up paper, the hybrid DG/FV schemes are extended onto two-dimensional unstructured and hybrid grids. The two-dimensional linear and non-linear scalar conservation law and Euler equations are considered. Some typical cases are tested to demonstrate the performance of the hybrid DG/FV method, and the numerical results show that they can reduce the CPU time and memory requirement greatly than the traditional DG method with the same order of accuracy in the same mesh.  相似文献   

14.
A new high-order finite volume method based on local reconstruction is presented in this paper. The method, so-called the multi-moment constrained finite volume (MCV) method, uses the point values defined within single cell at equally spaced points as the model variables (or unknowns). The time evolution equations used to update the unknowns are derived from a set of constraint conditions imposed on multi kinds of moments, i.e. the cell-averaged value and the point-wise value of the state variable and its derivatives. The finite volume constraint on the cell-average guarantees the numerical conservativeness of the method. Most constraint conditions are imposed on the cell boundaries, where the numerical flux and its derivatives are solved as general Riemann problems. A multi-moment constrained Lagrange interpolation reconstruction for the demanded order of accuracy is constructed over single cell and converts the evolution equations of the moments to those of the unknowns. The presented method provides a general framework to construct efficient schemes of high orders. The basic formulations for hyperbolic conservation laws in 1- and 2D structured grids are detailed with the numerical results of widely used benchmark tests.  相似文献   

15.
The generalized Riemann problem (GRP) scheme for the Euler equations and gas-kinetic scheme (GKS) for the Boltzmann equation are two high resolution shock capturing schemes for fluid simulations. The difference is that one is based on the characteristics of the inviscid Euler equations and their wave interactions, and the other is based on the particle transport and collisions. The similarity between them is that both methods can use identical MUSCL-type initial reconstructions around a cell interface, and the spatial slopes on both sides of a cell interface involve in the gas evolution process and the construction of a time-dependent flux function. Although both methods have been applied successfully to the inviscid compressible flow computations, their performances have never been compared. Since both methods use the same initial reconstruction, any difference is solely coming from different underlying mechanism in their flux evaluation. Therefore, such a comparison is important to help us to understand the correspondence between physical modeling and numerical performances. Since GRP is so faithfully solving the inviscid Euler equations, the comparison can be also used to show the validity of solving the Euler equations itself. The numerical comparison shows that the GRP exhibits a slightly better computational efficiency, and has comparable accuracy with GKS for the Euler solutions in 1D case, but the GKS is more robust than GRP. For the 2D high Mach number flow simulations, the GKS is absent from the shock instability and converges to the steady state solutions faster than the GRP. The GRP has carbuncle phenomena, likes a cloud hanging over exact Riemann solvers. The GRP and GKS use different physical processes to describe the flow motion starting from a discontinuity. One is based on the assumption of equilibrium state with infinite number of particle collisions, and the other starts from the non-equilibrium free transport process to evolve into an equilibrium one through particle collisions. The different mechanism in the flux evaluation deviates their numerical performance. Through this study, we may conclude scientifically that it may NOT be valid to use the Euler equations as governing equations to construct numerical fluxes in a discretized space with limited cell resolution. To adapt the Navier–Stokes (NS) equations is NOT valid either because the NS equations describe the flow behavior on the hydrodynamic scale and have no any corresponding physics starting from a discontinuity. This fact alludes to the consistency of the Euler and Navier–Stokes equations with the continuum assumption and the necessity of a direct modeling of the physical process in the discretized space in the construction of numerical scheme when modeling very high Mach number flows. The development of numerical algorithm is similar to the modeling process in deriving the governing equations, but the control volume here cannot be shrunk to zero.  相似文献   

16.
An efficient implementation of the high-order spectral volume (SV) method is presented for multi-dimensional conservation laws on unstructured grids. In the SV method, each simplex cell is called a spectral volume (SV), and the SV is further subdivided into polygonal (2D), or polyhedral (3D) control volumes (CVs) to support high-order data reconstructions. In the traditional implementation, Gauss quadrature formulas are used to approximate the flux integrals on all faces. In the new approach, a nodal set is selected and used to reconstruct a high-order polynomial approximation for the flux vector, and then the flux integrals on the internal faces are computed analytically, without the need for Gauss quadrature formulas. This gives a significant advantage over the traditional SV method in efficiency and ease of implementation. For SV interfaces, a quadrature-free approach is compared with the Gauss quadrature approach to further evaluate the accuracy and efficiency. A simplified treatment of curved boundaries is also presented that avoids the need to store a separate reconstruction for each boundary cell. Fundamental properties of the new SV implementation are studied and high-order accuracy is demonstrated for linear and non-linear advection equations, and the Euler equations. Several well known inviscid flow test cases are utilized to show the effectiveness of the simplified curved boundary representation.  相似文献   

17.
张玉东  纪楚群 《计算物理》2006,23(2):165-170
发展建立了用于多体分离等包含动边界的非定常流场数值模拟方法,建立了笛卡尔坐标系下边界以任意速度运动的控制体上的流动控制方程,结合几何守恒律确定网格速度,发展了基于结构网格的动网格方法,网格移动量采用加权插值方法得到.通过数值模拟二维翼型及三维机翼的强迫振荡非定常流场,表明该方法可以数值模拟包含动边界的非定常流场.  相似文献   

18.
A reconstruction-based discontinuous Galerkin (RDG) method is presented for the solution of the compressible Navier–Stokes equations on arbitrary grids. The RDG method, originally developed for the compressible Euler equations, is extended to discretize viscous and heat fluxes in the Navier–Stokes equations using a so-called inter-cell reconstruction, where a smooth solution is locally reconstructed using a least-squares method from the underlying discontinuous DG solution. Similar to the recovery-based DG (rDG) methods, this reconstructed DG method eliminates the introduction of ad hoc penalty or coupling terms commonly found in traditional DG methods. Unlike rDG methods, this RDG method does not need to judiciously choose a proper form of a recovered polynomial, thus is simple, flexible, and robust, and can be used on arbitrary grids. The developed RDG method is used to compute a variety of flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG method is able to deliver the same accuracy as the well-known Bassi–Rebay II scheme, at a half of its computing costs for the discretization of the viscous fluxes in the Navier–Stokes equations, clearly demonstrating its superior performance over the existing DG methods for solving the compressible Navier–Stokes equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号