首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用共沉淀法和溶胶-凝胶法制备了同组分的硫化态K-Co-Mo催化剂,并用EXAFS研究了体系中Mo原子和Co原子的局域配位情况.结果表明,硫化态K-Co-Mo样品中Mo原子以类似于MoS2结构的物种存在,而Co原子除了以Co9S8形式存在外,还以一种Co-Mo-S相的形式存在,Co-Mo-S的晶相结构与MoS2类似.结合活性测试结果认为Co-Mo-S的形成促进了样品催化活性的提高.此外,EXAFS结果还表明,不同制备方法对K-Co-Mo样品中Mo物种晶粒尺寸具有较大的影响,而对CogS8粒子则影响不明显.其中,采用溶胶—凝胶方法制备,并且在氢气中处理过的样品中Mo物种具有最小的晶粒尺寸.  相似文献   

2.
采用XRD、EXAFS等手段考察了Co载量对催化剂结构的影响,并关联其合成醇活性。活性炭担载的硫化态Co-Mo-K样品中,Mo主要以MoS2物种形式存在于活性炭的表面上,而Co在低Co载量时主要形成“Co-Mo-S”相,在高Co负载量会有部分类CO9S8的物相出现。经Co助剂修饰后的催化剂显示出良好的合成醇催化性能,Co助剂有利于合成C2醇。Co/Mo原于比为0.5时.表面“Co-Mo-S”相可能达到饱和,合成醇的收率也最高。Co物种是和MoS2物相以协同的方式起作用的。  相似文献   

3.
采用XRD、EXAFS等技术研究微量贵金属Rh对活性炭担载的Rh-Mo-K合成醇催化剂结构的影响,并关联其催化性能。氧化态Rh-Mo-K/AC样品中Rh与Mo有着较强的相互作用,使得K2Mo2O7向MoO2转化。硫化还原后,Mo主要以MoS2微晶形式存在,其有序结构尺度随Rh含量的增加而减小。经Rh助剂修饰后,催化剂的合成醇催化性能有明显的提高。  相似文献   

4.
应用同步辐射Eextended X-ray Ab sorption Fine S tructure(EXAFS)技术研究固态法制备的KHMoY分子筛的氧化态和硫化态样品以及硫化态KHY/MoO3样品中钼组分的局域配位环境结构,并与KHMoY和KHY/MoO3 样品催化加氢活性结果进行对照。结果表明,随原子比(K+2Mo)/Al的变化,钼原子周围的配位环境有显著的差异。当(K+2Mo)/Al时,KHMoY和KHY/MoO3硫化后,钼组分主要以MoS2小原子簇分散在分子筛超笼中;(K+2Mo)/Al>1时,钼组分则有两种存在环境,即分子筛超笼中的和分子筛外表的钼组分。分子筛超笼中的Mo S2原子簇的催化加氢合成醇选择性较高;分子筛外表面的MoS2微小颗粒的尺寸相对于超笼中的要大许多,其合成醇选择 性较低。  相似文献   

5.
采用XRD、EXAFS等技术研究向微量贵金属Rh对活性炭担载的Rh-Mo-K合成醇催化剂结构的影响,并关联其催化性能。氧化态Rh-Mo-K/AC样品中Rh与Mo有着较强的相互作用,使得K2Mo2O7向MoO2转化。硫化还原后,Mo主要以MoS2微晶形式存在,其有序结构尺度随Rh含量的增加而减小。经Rh助剂修饰后,催化剂的合成醇催化性能有明显的提高。  相似文献   

6.
报道了水热法合成的高强度ZnS∶Au,Cu超细X射线发光粉及其光致发光(PL)和X射线激发发光(XEL)的光谱特性。200℃水热处理12h直接合成样品的纳米晶粒约15nm,尺寸分布窄,分散性好,具有纯立方相的类球形结构。氩气保护下1000℃焙烧1h后的样品存在一定的团聚,但团聚后尺寸为1~2μm,为超细X射线发光粉,此时样品为纯六角相的类球形为主的结构。所有样品的PL和XEL光谱均为宽带谱,水热法直接合成样品的XEL强度最强时,样品的Cu/Zn,Au/Cu比值分别为3×10-5和2。在此比值条件下,1000℃焙烧1h样品的XEL发光最强,此时其2个峰值分别位于445和513nm,且与未焙烧前相比强度增强了10倍左右。另外通过比较PL光谱与XEL光谱特性,讨论了PL和XEL光谱的发光机理和其不同的激发机制。  相似文献   

7.
报道了水热法合成的高强度ZnS:Au,Cu超细X射线发光粉及其光致发光(PL)和X射线激发发光(XEL)的光谱特性.200℃水热处理12 h直接合成样品的纳米晶粒约15 nm,尺寸分布窄,分散性好,具有纯立方相的类球形结构.氩气保护下1000℃焙烧1 h后的样品存在一定的团聚,但团聚后尺寸为1~2μm,为超细X射线发光粉,此时样品为纯六角相的类球形为主的结构.所有样品的PL和XEL光谱均为宽带谱,水热法直接合成样品的XEL强度最强时,样品的Cu/Zn,Au/Cu比值分别为3×10-5和2.在此比值条件下,1000℃焙烧1h样品的XEL发光最强,此时其2个峰值分别位于445和513 nm,且与未焙烧前相比强度增强了10倍左右.另外通过比较PL光谱与XEL光谱特性,讨论了PL和XEL光谱的发光机理和其不同的激发机制.  相似文献   

8.
采用凝聚炸药爆轰和气相爆轰分别制备碳包铜纳米颗粒,并利用XRD,Raman和TEM等方法对合成纳米产物进行对比分析。其中凝聚炸药爆轰法以柠檬酸铜干凝胶、油酸和黑索金为原料按照一定比例配成爆炸源,在氮气的保护氛围中引爆;而气相爆轰法以乙酰丙酮铜为原料,分别以H2和O2,H2和空气为爆炸源,在负氧条件下引爆。通过XRD,Raman和TEM分析结果表明,两类爆轰法均可得到分散性良好的碳包覆铜纳米颗粒,碳壳石墨化程度较高。气相爆轰可以合成10 nm以下的纳米晶粒,而凝聚炸药爆轰合成的晶粒尺寸在20~40 nm,且存在较多空壳结构;气相爆轰产物其碳壳尺寸在2~3 nm,凝聚炸药爆轰产物其碳壳尺寸在2~5 nm。  相似文献   

9.
采用溶胶凝胶法与等体积浸渍相结合制备了一系列以粘土为载体的K-Co-Mo催化剂. 采用XRD、N2等温吸脱附、H26+的还原,但对Mo4+和Co2+的还原没有明显的影响. 催化剂经还原后,在其表面生成了一种更低价态的Moδ+(1<δ<4)物种,被认为是合成醇的活性中心. 与非负载催化剂相比,粘土担载的K-Co-Mo具有更高的合成醇性能. 负载型催化剂具有较高的活性物种分散度,并且其介孔结构在一定程度上延长了合成醇反应中间体的滞留时间,从而促进了低碳醇的生成. 经773 K还原的催化剂具有较高的活性,其原因可为催化剂表面具有较高含量的Moδ+物种.  相似文献   

10.
采用XRD、EXAFS技术研究了不同Pd含量的Pd-Mo-K/Al2O3催化剂结构,并关联其合成低碳混合醇性能。结果表明,在氧化态Mo-K/Al2O3催化剂体系中添加Pd后,“K-Mo”物相晶粒变小,分散度提高,说明钯可能和钾钼物种发生了较强的相互作用。经硫化还原处理后,发生了氧硫交换,钼主要以MoS2物种形式存在,其粒度随着Pd含量的增加而明显减小。尺寸的显著变化可能导致MoS2与载体作用形式的  相似文献   

11.
Gd2O3:Eu3+纳米晶的燃烧合成及光致发光性质   总被引:4,自引:0,他引:4       下载免费PDF全文
采用柠檬酸作燃烧剂用燃烧合成法制备了Gd2O3:Eu3+纳米晶.用X射线衍射仪(XRD)、高分辨透射电子显微镜(HRTEM)和荧光分光光度计等对Gd2O3:Eu3+纳米晶的结构、形貌和发光性能进行了分析.结果表明:不同柠檬酸与稀土离子配比(C/M)制备的样品经800℃退火1 h后,均得到了纯立方相的Gd2O3:Eu3+纳米晶,晶粒尺寸约为30 nm,尺寸分布较窄,其中以C/M=1.0时制备的纳米晶结晶性最好,发光强度最大.Gd2O3:Eu3+纳米晶主发射峰位置均在612 nm处(5D0→7F2跃迁),激发光谱中电荷迁移态发生红移,观察到Gd3+向Eu3+的有效能量传递.对柠檬酸与稀土离子配比(C/M)对结晶度、发光性质等的影响也进行了分析和讨论.  相似文献   

12.
X射线衍射线形与晶体材料的微观结构密切相关.在晶粒尺寸衍射线形和微应变衍射线形可由Voigt函数近似描述的前提下,本文较详细地论述了由X射线衍射线形分析获取晶粒尺寸和位错等微观结构信息的方法.采用这种方法,对乙二醇还原法制备的Pt/C催化剂进行了X射线衍射线形分析.样品晶粒尺寸分布的对数正态均值为0.95 nm,对数正态方差为0.37.X射线衍射线形分析所得晶粒尺寸分布与透射电镜的测试结果符合较好.对样品的衍射线形积分宽度进行细致的比较,发现存在各向异性展宽现象.如果衍射线的各向异性展宽主要是由伯格斯矢量为1/2〈110〉的位错引起,可进一步计算位错密度值.结果表明,位错组态无论是螺型位错还是刃型位错,位错密度值的量级均约为1015/m2.  相似文献   

13.
采用水热合成法.制备了不同Al2O3含量的Ni/Zr0.4Ce0.6O2-Al2O3催化剂。采用X-射线衍射(XRD)和扩展X光吸收精细结构(EXAFS),对催化剂样品进行结构表征;考察了Al2O3的加入对催化剂结构和CH4-CO2重整反应活性的影响。结构表征和活性测试表明,催化剂中存在的主要晶相是Zr0.4Ce0.6O2.Al2O3的加入,使催化剂颗粒度变小,镍的分散度提高。并使反应活性有明显改进,而过量Al2O3的加入,却容易导致积炭.  相似文献   

14.
以醋酸钡和钛酸四丁酯为原料,采用溶胶-凝胶法合成了纳米BaTiO3粉体;运用差示/热重、X射线衍射及透射电镜对前驱体凝胶和产物进行了表征,并根据XRD结果,研究了纳米BaTiO3的晶格常数、晶格畸变度和晶粒尺寸随焙烧温度及时间的变化。结果表明,焙烧温度与时间对纳米BaTiO3晶格常数的影响不明显;随焙烧温度或时间的延长,纳米BaTiO3的晶格畸变度减小,晶粒尺寸增大,但晶格畸变度和晶粒尺寸更敏感于焙烧温度. 基于扩散控制机理的传统模型探讨了焙烧过程纳米BaTiO3晶粒生长动力学,得出其晶粒生长指数为7,晶粒生长活化能为75.49 kJ/mol. 将基于扩散与反应共同控制机理的新型等温模型应用于本研究中,结果表明,新型等温模型更能真实地反映纳米BaTiO3焙烧过程中的晶粒生长行为,说明纳米BaTiO3晶粒生长过程同时受溶质扩散和表面反应控制,其藕合晶粒生长活化能为27.23 kJ/mol.  相似文献   

15.
以醋酸锌和六次甲基四胺为原料在不同的溶液环境中,采用水热法或热溶液法合成了不同形貌的微纳氧化锌.氧化锌形貌和尺寸的控制对合成环境有强烈的依赖.通过化学吸附将乙二胺四乙酸二钠和柠檬酸吸附在氧化锌的极性面上,可以抑制极性面的晶体生长,调控氧化锌的晶体形貌.这种选择吸附性导致了样品形貌的不同.拉曼光谱测试结果表明,在柠檬酸溶液中合成的氧化锌的晶粒更小.光致发光光谱测试结果表明,所得到的氧化锌的发光是激子和缺陷发光.  相似文献   

16.
尖晶石型纳米铁酸镍的制备与磁性研究   总被引:2,自引:1,他引:1  
以Fe(NO3)3·9H2O和Ni(NO3)2·6H2O为原料,用柠檬酸为还原剂,采用燃烧法制备了NiFe2O4纳米粉体,用X射线粉末衍射仪(XRD)、透射电子显微镜(TEM)、红外光谱(IR)和振动样品磁强计(VSM)等手段对样品进行了表征,结果表明,样品为立方晶系尖晶石铁酸镍纳米粉体,其粒径在20—40nm之间,具有超顺磁性,并探讨了焙烧温度、焙烧时间对样品磁性的影响。  相似文献   

17.
何开棘  刘佳  吕浩  王开明 《光谱实验室》2012,29(4):1974-1977
采用水热合成法成功制备纤蛇纹石纳米管,并通过改变前躯体MgO和活性纳米SiO2的培烧温度及反应时间等因素得到材料制备的最佳条件,利用XRD、TEM等手段对合成样品进行表征。结果表明:前躯体MgO的焙烧温度、SiO2的焙烧温度及二者的反应时间等都能影响纤蛇纹石纳米管的合成。在本实验条件下,600℃焙烧得到的MgO和500℃焙烧得到的活性纳米SiO2在反应时间为48h时合成的纤蛇纹石纳米管结晶完美,分散性好,轮廓清晰、完整,管长200—800nm,最长可达1000nm以上。  相似文献   

18.
采用水热法制备不同醇水比的NaYF4∶20%Yb3+,2%Er3+晶体,通过XRD、FE-SEM、TEM、PL测试手段对合成样品进行表征和分析。样品的FE-SEM图结果表明,随着醇水比的增大,颗粒尺寸越来越小,最小可达纳米级。通过XRD测试表明,醇水比对样品的晶相亦有影响,当醇水比为30/10 mL时,产物中开始出现α-NaYF4晶相。验证了形成机理的正确性并得到一条相转变反应时间与醇水比关系的模拟曲线图。TEM图显示样品属于多晶,且结晶性能良好。在980 nm近红外光激发下,β-NaYF4∶20%Yb3+,2%Er3+上转换晶体发出绿光和红光。  相似文献   

19.
用一定比例的硝酸铁盐、硅酸钠盐、无水乙醇与黑索金混合制成塑性炸药。在密闭容器中以氩气为保护气,通过爆轰合成氧化亚铁掺杂的二氧化硅包覆铁纳米颗粒。采用X射线衍射(XRD)、透射电镜(TEM)及振动样品磁强计(VSM)对爆轰产物的组成成分、形态结构以及磁性进行测试。实验结果表明,爆轰产物以金属颗粒为核、二氧化硅为包覆层的壳/核结构形式出现,颗粒尺寸在60nm左右。通过分析爆轰产物的磁性曲线可知,在室温下爆轰产物具有较高的剩磁比和矫顽力,表现出弱的铁磁性,是优良的储磁材料。  相似文献   

20.
新梅  曹望和 《物理学报》2010,59(8):5833-5838
研究了水热法合成的ZnS: Cu,Tm超细X射线发光粉及其光致发光(PL)和X射线激发发光(X-ray excited luminescence,XEL)光谱特性.200 ℃水热处理12 h直接合成样品的纳米晶粒径约15 nm,尺寸分布窄,分散性好,具有纯立方相的类球形结构.氩气保护下900 ℃退火1 h后的样品存在一定的团聚,但团聚后尺寸为200—600 nm,为超细X射线发光粉,此时样品为纯六方相的类球形为主的结构.所有样品的PL和XEL光谱均为宽带谱.水热法直接合成样品的XEL强度最强时,样品的Cu/Zn,Tm/Cu比值分别为3×10-4和2.在此比值条件下,900 ℃退火1 h样品的XEL发光最强,此时其两个峰值分别位于453,525 nm.发光强度增强的同时粒径很小,对提高成像系统分辨率非常有意义.通过比较PL光谱与XEL光谱特性,讨论了PL和XEL光谱的发光机理和其不同的激发机理. 关键词: ZnS:Cu Tm 水热法 X射线激发发光  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号