首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Al-doped ZnO (AZO) films prepared at different substrate temperature and AZO films with intentional Zn addition (ZAZO) during deposition at elevated substrate temperature were fabricated by radio frequency magnetron sputtering on glass substrate, and the resulting structural, electrical, optical properties together with the etching characteristics and annealing behavior were comparatively examined. AZO films deposited at 150 °C showed the optimum electrical properties and the largest grain size. XPS analysis revealed that AZO films deposited at elevated temperature of 450 °C contained large amount of Al content due to Zn deficiency, and that intentional Zn addition during deposition could compensate the deficiency of Zn to some extent. It was shown that the electrical, optical and structural properties of ZAZO films were almost comparable to those of AZO film deposited at 150 °C, and that ZAZO films had much smaller etching rate together with better stability in severe annealing conditions than AZO films due possibly to formation of dense structure.  相似文献   

2.
Transparent conductive Al-doped zinc oxide (AZO) films with highly (0 0 2)-preferred orientation were deposited on quartz substrates at room temperature by RF magnetron sputtering. Optimization of deposition parameters was based on RF power, Ar pressure in the vacuum chamber, and distance between the target and substrate. The structural, electrical, and optical properties of the AZO thin films were investigated by X-ray diffraction, Hall measurement, and optical transmission spectroscopy. The 250 nm thickness AZO films with an electrical resistivity as low as 4.62 × 10−4 Ω cm and an average optical transmission of 93.7% in the visible range were obtained at RF power of 300 W, Ar flow rate of 30 sccm, and target distance of 7 cm. The optical bandgap depends on the deposition condition, and was in the range of 3.75-3.86 eV. These results make the possibility for light emitting diodes (LEDs) and solar cells with AZO films as transparent electrodes, especially using lift-off process to achieve the transparent electrode pattern transfer.  相似文献   

3.
Al-doped ZnO (AZO) transparent conducting films were successfully prepared on glass substrates by RF magnetron sputtering at different substrate temperatures in Ar and H2 + Ar sputtering ambient. The effects of substrate temperature on the effectiveness of hydrogen incorporation in Al-doped ZnO films were investigated. The microstructural, electrical and optical properties of AZO films were systematically analyzed by surface profiler, X-ray diffractometry, scanning electron microscope, four-point probe measurement and UV/vis spectrophotometer. The XRD patterns and SEM pictures indicate that the crystallinity of AZO thin films was markedly improved with hydrogen incorporation at low substrate temperature, while the improvement of crystallinity was not an obvious change at high substrate temperature. The results also indicate that hydrogen incorporation has the stronger effectiveness on the transparent conductive properties of AZO films with the substrate temperature decreasing. The resistivity of the films decreases, especially for lower substrate temperatures, due to the incorporation of hydrogen atoms. These results suggest that substrate temperature should be controlled to the lower level to effectively reduce resistivity without detriment to transmittance of AZO thin films when hydrogen is incorporated.  相似文献   

4.
Al-doped ZnO (AZO) transparent conducting films were successfully prepared on glass substrates by RF magnetron sputtering method under different substrate temperatures. The microstructural, electrical and optical properties of AZO films were investigated in a wide temperature range from room temperature up to 350 °C by X-ray Diffraction (XRD), Field-Emission Scanning Electron Microscopy (FESEM), High-Resolution Transmission Electron Microscopy (HRTEM), Hall measurement, and UV–visible meter. The nature of AZO films is polycrystalline thin films with hexagonal wurtzite structure and a preferred orientation along c-axis. The crystallinity and surface morphologies of the films are strongly dependent on the growth temperature, which in turn exerts a great effect on microstructural, electrical and optical properties of the AZO films. The atomic arrangement of AZO film having an wurtzite structure was indeed identified by the HRTEM as well as the Selected Area Electron Diffraction (SAED). The defect density of AZO film was investigated by HRTEM. The film deposited at 100 °C exhibited the relatively well crystallinity and the lowest resistivity of 3.6 × 10−4 Ω cm. The average transmission of AZO films in the visible range is all over 85%. More importantly, the low-resistance and high-transmittance AZO film was also prepared at a low temperature of 100 °C.  相似文献   

5.
Zinc-indium-oxide (ZIO) films were deposited on non-alkali glass substrates by RF superimposed DC magnetron sputtering with a ZIO (9.54 wt% In2O3 content) high-density, sintered target at room temperature. The electrical, structural and optical properties of the ZIO films deposited with different sputtering parameters were examined. The total power for RF superimposed DC magnetron sputtering was 80 W. The RF power ratio in the total sputtering power was changed from 0 to 100% in steps of 25%. The ZIO films deposited with a 100% RF discharge showed the lowest resistivity, 1.28×10−3 Ω cm, due to the higher carrier concentration. The ZIO film deposited at 50% RF power showed a relatively larger grain size and smaller FWHM. XPS suggested an increase in the level of In3+ substitution for Zn2+ in the ZnO lattice with increasing RF/(DC+RF) due to the low damage process. The average transmittance of all ZIO films in the visible light region was >80%. The increasing RF power portion of the total sputtering power led to a broadening of the optical band gap, which was attributed to the increase in carrier density according to Burstein-Moss shift theory.  相似文献   

6.
TiO2 thin films were deposited onto quartz substrates by RF magnetron sputtering. The samples deposited at various RF powers and sputtering pressures and post annealed at 873 K, were characterized using X-ray diffraction (XRD), micro Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV-vis spectroscopy and photoluminescence (PL) spectroscopy. XRD spectrum indicates that the films are amorphous-like in nature. But micro-Raman analysis shows the presence of anatase phase in all the samples. At low sputtering pressure, increase in RF power favors the formation of rutile phase. Presence of oxygen defects, which can contribute to PL emission is evident in the XPS studies. Surface morphology is much affected by changes in sputtering pressure which is evident in the SEM images. A decrease in optical band gap from 3.65 to 3.58 eV is observed with increase in RF power whereas increase in sputtering pressure results in an increase in optical band gap from 3.58 to 3.75 eV. The blue shift of absorption edge in all the samples compared to that of solid anatase is attributed to quantum size effect. The very low value of extinction coefficient in the range 0.0544-0.1049 indicates the excellent optical quality of the samples. PL spectra of the films showed emissions in the UV and visible regions.  相似文献   

7.
采用射频磁控溅射法,在玻璃基片上制备了ZnO:Al(AZO)透明导电薄膜。用X射线衍射(XRD)仪、紫外-可见分光光度计、方块电阻测试仪和台阶仪对不同溅射功率下Al掺杂ZnO薄膜的结晶、光学、电学性能、沉积速率以及热稳定性进行了研究。研究结果表明:不同溅射功率下沉积的AZO薄膜具有六角纤锌矿结构,均呈c轴择优取向;(002)衍射峰强和薄膜的结晶度随溅射功率的提高逐渐增强;随溅射功率的提高,AZO薄膜的透射率有所下降,但在可见光(380~780nm)范围内平均透射率仍80%;薄膜的方块电阻随溅射功率的增加逐渐减小;功率为160~200W时,薄膜的热稳定性最好,升温前后方块电阻变化率为13%。  相似文献   

8.
Pure and Cu-doped ZnO (ZnO:Cu) thin films were deposited on glass substrates using radio frequency (RF) reactive magnetron sputtering. The effect of substrate temperature on the crystallization behavior and optical properties of the ZnO:Cu films have been studied. The crystal structures, surface morphology and optical properties of the films were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer, respectively. The results indicated that ZnO films showed a stronger preferred orientation toward the c-axis and a more uniform grain size after Cu-doping. As for ZnO:Cu films, the full width at half maxima (FWHM) of (0 0 2) diffraction peaks decreased first and then increased, reaching a minimum of about 0.42° at 350 °C and the compressive stress of ZnO:Cu decreased gradually with the increase of substrate temperature. The photoluminescence (PL) spectra measured at room temperature revealed two blue and two green emissions. Intense blue-green luminescence was obtained from the sample deposited at higher substrate temperature. Finally, we discussed the influence of annealing temperature on the structural and optical properties of ZnO:Cu films. The quality of ZnO:Cu film was markedly improved and the intensity of blue peak (∼485 nm) and green peak (∼527 nm) increased noticeably after annealing. The origin of these emissions was discussed.  相似文献   

9.
Molecular dynamics (MD) simulation and experimental methods are used to study the deposition mechanism of ionic beam sputtering (IBS), including the effects of incident energy, incident angle and deposition temperature on the growth process of nickel nanofilms. According to the simulation, the results showed that increasing the temperature of substrate decreases the surface roughness, average grain size and density. Increasing the incident angle increases the surface roughness and the average grain size of thin film, while decreasing its density. In addition, increasing the incident energy decreases the surface roughness and the average grain size of thin film, while increasing its density. For the cases of simulation, with the substrate temperature of 500 K, normal incident angle and 14.6 × 10−17 J are appropriate, in order to obtain a smoother surface, a small grain size and a higher density of thin film. From the experimental results, the surface roughness of thin film deposited on the substrates of Si(1 0 0) and indium tin oxide (ITO) decreases with the increasing sputtering power, while the thickness of thin film shows an approximately linear increase with the increase of sputtering power.  相似文献   

10.
Si doped zinc oxide (SZO, Si3%) thin films are grown at room temperature on glass substrates under argon atmosphere, using direct current magnetron sputtering. The influence of the target substrate distances on structure, morphology, optical and electrical properties of SZO thin films is investigated. Experimental results show that the target substrate distances have a significance impact on the growth rate, crystal quality and electrical properties of the films, and have little impact on the optical properties of the films. SZO thin film samples grown on glasses are polycrystalline with a hexagonal wurtzite structure and have a preferred orientation along the c-axis perpendicular to the substrate. When the target substrate distance decreases from 76 to 60 mm, the degree of crystallization of the films increased, the grain size increases, and the resistivity of films decreases. However, when the distance continuously decreases from 60 to 44 mm, the degree of crystallization of the films decreased, the grain size decreases, and the resistivity of the films increases. SZO(3%) thin films deposited at a target substrate distance of 60 mm show the lowest resistivity of 5.53 × 10−4 Ω cm, a high average transmission of 94.47% in the visible range, and maximum band gap of 3.45 eV under 5 Pa of argon at sputtering power of 75 W for sputtering time of 20 min.  相似文献   

11.
Transparent p-type nickel oxide thin films were grown on polyethylene terephthalate (PET) and glass substrates by RF magnetron sputtering technique in argon + oxygen atmosphere with different oxygen partial pressures at room temperature. The morphology of the NiO thin films grown on PET and glass substrates was studied by atomic force microscope. The rms surface roughnesses of the films were in the range 0.63-0.65 nm. These ultra smooth nanocrystalline NiO thin films are useful for many applications. High resolution transmission electron microscopic studies revealed that the grains of NiO films on the highly flexible PET substrate were purely crystalline and spherical in shape with diameters 8-10 nm. XRD analysis also supported these results. NiO films grown on the PET substrates were found to have better crystalline quality with fewer defects than those on the glass substrates. The sheet resistances of the NiO films deposited on PET and glass substrates were not much different; having values 5.1 and 5.3 kΩ/□ and decreased to 3.05, 3.1 kΩ/□ respectively with increasing oxygen partial pressure. The thicknesses of the films on both substrates were ∼700 nm. It was also noted that further increase in oxygen partial pressure caused increase in resistivity due to formation of defects in NiO.  相似文献   

12.
X-ray diffraction (XRD) patterns revealed that the as-grown and annealed Al-doped ZnO (AZO) films grown on the n-Si (1 0 0) substrates were polycrystalline. Transmission electron microscopy (TEM) images showed that bright-contrast regions existed in the grain boundary, and high-resolution TEM (HRTEM) images showed that the bright-contrast regions with an amorphous phase were embedded in the ZnO grains. While the surface roughness of the AZO film annealed at 800 °C became smoother, those of the AZO films annealed at 900 and 1000 °C became rougher. XRD patterns, TEM images, selected-area electron diffraction patterns, HRTEM images, and atomic force microscopy (AFM) images showed that the crystallinity in the AZO thin films grown on the n-Si (1 0 0) substrates was enhanced resulting from the release in the strain energy for the AZO thin films due to thermal annealing at 800 °C. XRD patterns and AFM images show that the crystallinity of the AZO thin films annealed at 1000 °C deteriorated due to the formation of the amorphous phase in the ZnO thin films.  相似文献   

13.
Bismuth thin films were prepared on glass substrates with RF magnetron sputtering and the effects of deposition temperature on surface morphology and their electrical transport properties were investigated. Grain growth of bismuth and the coalescence of grains were observed above 393 K with field emission secondary electron microscopy. Continuous thin films could not be obtained above 448 K because of the segregation of grains. Hall effect measurements showed that substrate heating yields the decrease of carrier density and the increase of mobility in exponential ways until 403 K. Resistivity of sputter deposited bismuth films has its minimum (about 0.7 × 10−3 Ω cm) in range of 403-433 K. Annealing of bismuth films deposited at room temperature was carried out in a radiation furnace with flowing hydrogen gas. The change of resistivity was not significant due to the cancellation of the decrease of carrier density and the increase of mobility. However, the abrupt change of electrical properties of film annealed above 523 K was observed, which is caused by the oxidation of bismuth layer.  相似文献   

14.
ZnO:Al thin films with c-axis preferred orientation were deposited on glass and Si substrates using RF magnetron sputtering technique. The effect of substrate on the structural and optical properties of ZnO:Al films were investigated. The results showed a strong blue peak from glass-substrate ZnO:Al film whose intensity became weak when deposited on Si substrate. However, the full width at half maxima (FWHM) of the Si-substrate ZnO:Al (0 0 2) peaks decreased evidently and the grain size increased. Finally, we discussed the influence of annealing temperature on the structural and optical properties of Si-substrate ZnO:Al films. After annealing, the crystal quality of Si-substrate ZnO:Al thin films was markedly improved and the intensity of blue peak (∼445 nm) increased noticeably. This observation may indicate that the visible emission properties of the ZnO:Al films are dependent more on the film crystallinity than on the film stoichiometry.  相似文献   

15.
A magnetic force microscopy is used to examine the domain walls in nickel and cobalt films deposited by argon ion sputtering. Thin nickel films deposited at high substrate temperatures exhibit coexistent Bloch and Neel walls. Films grown at room temperature display alternative Bloch lines with cap switches. These films agglomerate to form grains after annealed at high temperatures. The film composed of larger grains behaves better nucleation implying magnetic domains of closure, while the film composed of smaller grains exhibits more defects implying alternative Bloch lines. We have also observed domain displacements and cap switches, which occur due to precipitation of particles in small grain size films. Stripe domains are observed for film thicknesses larger than 100 nm. They become zigzag cells when an external field of 1.5 T is applied perpendicular to the surface of the films. This experiment indicates that the domain sizes in thin films and the strip widths for thick films both depend on the square-root of the film thickness, which varies from 5 to 45 nm and from 100 to 450 nm, respectively.  相似文献   

16.
Residual stress can adversely affect the mechanical, electronic, optical and magnetic properties of thin films. This work describes a simple stress measurement instrument based on the bending beam method together with a sensitive non-contact fibre optical displacement sensor. The fibre optical displacement sensor is interfaced to a computer and a Labview programme enables film stress to be determined from changes in the radius of curvature of the film-substrate system. The stress measurement instrument was tested for two different kinds of thin film, hard amorphous carbon nitride (CN) and soft copper (Cu) films on silicon substrates deposited by RF magnetron sputtering. Residual stress developed in 500 nm thick CN thin films deposited at substrate temperatures in the range 50-550 °C was examined and it was found that stress in CN films decreased from 0.83 to 0.44 GPa compressive with increase of substrate temperature. Residual stress was found to be tensile (121 MPa) for Cu films of thickness 1500 nm deposited at room temperature.  相似文献   

17.
Highly transparent conductive Al2O3 doped zinc oxide (AZO) thin films have been deposited on the glass substrate by pulsed laser deposition technique. The effects of substrate temperature and post-deposition annealing treatment on structural, electrical and optical properties of AZO thin films were investigated. The experimental results show that the electrical resistivity of films deposited at 240 °C is 6.1 × 10−4 Ω cm, which can be further reduced to as low as 4.7 × 10−4 Ω cm by post-deposition annealing at 400 °C for 2 h in argon. The average transmission of AZO films in the visible range is 90%. The optical direct band gap of films was dependent on the substrate temperature and the annealing treatment in argon. The optical direct band gap value of AZO films increased with increasing annealing temperature.  相似文献   

18.
Plasma-assisted magnetron sputtering with varying ambient conditions has been utilised to deposit Al-doped ZnO (AZO) transparent conductive thin films directly onto a glass substrate at a low substrate temperature of 400 °C. The effects of hydrogen addition on electrical, optical and structural properties of the deposited AZO films have been investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM), Hall effect measurements and UV-vis optical transmission spectroscopy. The results indicate that hydrogen addition has a remarkable effect on the film transparency and conductivity with the greatest effects observed with a hydrogen flux of approximately 3 sccm. It has been demonstrated that the conductivity and the average transmittance in the visible range can increase simultaneously contrary to the effects observed by other authors. In addition, hydrogen incorporation further leads to the absorption edge shifting to a shorter wavelength due to the Burstein-Moss effect. These results are of particular relevance to the development of the next generation of optoelectronic and photovoltaic devices based on highly transparent conducting oxides with controllable electronic and optical properties.  相似文献   

19.
280 nm-thick Ni films were deposited on SiO2/Si(1 0 0) and MgO(0 0 1) substrates at 300 K, 513 K and 663 K by a direct current magnetron sputtering system with the oblique target. The films deposited at 300 K mainly have a [1 1 0] crystalline orientation in the film growth direction. The [1 1 0]-orientation weakens and the [1 1 1]- and [1 0 0]-orientations enhance with increasing deposition temperature. The lattice constant of the Ni films is smaller than that of the Ni bulk, except for the film grown on MgO(0 0 1) at 663 K. Furthermore, as the deposition temperature increases, the lattice constant of the films grown on the SiO2/Si(1 0 0) decreases whereas that of the films grown on the MgO(0 0 1) increases. The films deposited at 300 K and 513 K grow with columnar grains perpendicular to the substrate. For the films deposited at 663 K, however, the columnar grain structure is destroyed, i.e., an about 50 nm-thick layer consisting of granular grains is formed at the interface between the film and the substrate and then large grains grow on the layer. The Ni films deposited at 300 K consist of thin columnar grains and have many voids at the grain boundaries. The grains become thick and the voids decrease with increasing deposition temperature. The resistivity of the film decreases and the saturation magnetization increases with increasing deposition temperature.  相似文献   

20.
用射频磁控溅射法在80℃衬底温度下制备出MgxZn1-xO(x=0.16)薄膜,用X射线衍射(XRD)、光致发光(PL)和透射谱研究了退火温度对MgxZn1-xO薄膜结构和光学性质的影响.测量结果显示,MgxZn1-xO薄膜为单相六角纤锌矿结构,并且具有沿c轴的择优取向;随着退火温度的升高,(002)XRD峰强度、平均晶粒尺寸和紫外PL峰强度增大,(002)XRD峰半高宽(F 关键词: xZn1-xO薄膜')" href="#">MgxZn1-xO薄膜 射频磁控溅射 退火  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号