首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, highly transparent conductive Ga-doped Zn0.9Mg0.1O (ZMO:Ga) thin films have been deposited on glass substrates by pulsed laser deposition (PLD) technique. The effects of substrate temperature and post-deposition vacuum annealing on structural, electrical and optical properties of ZMO:Ga thin films were investigated. The properties of the films have been characterized through Hall effect, double beam spectrophotometer and X-ray diffraction. The experimental results show that the electrical resistivity of film deposited at 200 °C is 8.12 × 10−4 Ω cm, and can be further decreased to 4.74 × 10−4 Ω cm with post-deposition annealing at 400 °C for 2 h under 3 × 10−3 Pa. In the meantime, its band gap energy can be increased to 3.90 eV from 3.83 eV. The annealing process leads to improvement of (0 0 2) orientation, wider band gap, increased carrier concentration and blue-shift of absorption edge in the transmission spectra of ZMO:Ga thin films.  相似文献   

2.
Aluminum-doped zinc oxide (AZO) thin films have been deposited by electron beam evaporation technique on glass substrates. The structural, electrical and optical properties of AZO films have been investigated as a function of annealing temperature. It was observed that the optical properties such as transmittance, reflectance, optical band gap and refractive index of AZO films were strongly affected by annealing temperature. The transmittance values of 84% in the visible region and 97% in the NIR region were obtained for AZO film annealed at 475 °C. The room temperature electrical resistivity of 4.6×10−3 Ω cm has been obtained at the same temperature of annealing. It was found that the calculated refractive index has been affected by the packing density of the thin films, whereas, the high annealing temperature gave rise to improve the homogeneity of the films. The single-oscillator model was used to analyze the optical parameters such as the oscillator and dispersion energies.  相似文献   

3.
The structural, morphological, optical and electrical properties of ZnTe films deposited by evaporation were investigated as a function of substrate temperature (at −123 and 27 °C) and post-deposition annealing temperature (at 200, 300 and 400 °C). It was determined that films deposited at both substrate temperatures were polycrystalline in nature with zinc-blende structure and a strong (1 1 1) texture. A small Te peak was detected in XRD spectra for both substrate temperatures, indicating that as-deposited ZnTe films were slightly rich in Te. Larger grains and a tighter grain size distribution were obtained with increased substrate temperature. Scanning electron microscopy (SEM) studies showed that the microstructures of the as-deposited films agreed well with the expectations from structure zone model. Post-deposition annealing induced further grain growth and tightened the grain size distribution. Annealing at 400 °C resulted in randomization in the texture of films deposited at both substrate temperatures. Optical spectroscopy results of the films indicated that the optical band gap value increased from 2.13 to 2.16 eV with increased substrate temperature. Increasing the annealing temperature sharpened the band-edge. Resistivity measurements showed that the resistivity of films deposited at substrate temperatures of −123 and 27 °C were 32 Ω cm, and 1.0 × 104 Ω cm, respectively with corresponding carrier concentrations of 8.9 × 1015 cm−3 and 1.5 × 1014 cm−3. Annealing caused opposite changes in the film resistivity between the samples prepared at substrate temperatures of −123 and 27 °C.  相似文献   

4.
Al-doped ZnO (AZO) thin films oriented along the (0 0 2) plane have been prepared by the sol-gel process and their electrical and optical properties with post-deposition heating temperature were investigated. The preferred c-axis orientation along the (0 0 2) plane was enhanced with increasing post-deposition heating temperature and the surface of the films showed a uniform and nano-sized microstructure. The electrical resistivity of the films decreased from 73 to 22 Ω cm as the post-deposition heating temperature increased from 500 to 650 °C; however, the film postheated at 700 °C increased greatly to 580 Ω cm. The optical transmittance of the films postheated below 650 °C was over 86%, but it decreased at 700 °C. The electrical and optical properties of the AZO films with post-deposition heating temperature are discussed.  相似文献   

5.
Aluminum-doped zinc oxide (AZO) films were deposited at 400 °C by radio-frequency magnetron sputtering using a compound AZO target. The effects of annealing atmospheres as well as hydrogen annealing temperatures on the structural, optical and electrical properties of the AZO films were investigated. It was found that the electrical resistivity varied depending on the atmospheres while annealing in air, nitrogen and hydrogen at 300 °C, respectively. Comparing with that for the un-annealed films, the resistivity of the films annealed in hydrogen decreased from 9.8 × 10−4 Ω cm to 3.5 × 10−4 Ω cm, while that of the films annealed in air and nitrogen increased. The variations in electrical properties are ascribed to both the changes in the concentration of oxygen vacancies and adsorbed oxygen at the grain boundaries. These results were clarified by the comparatively XPS analyzing about the states of oxygen on the surface of the AZO films. There was great increase in electrical resistivity due to the damage of the surfaces, when AZO films were annealed in hydrogen with a temperature higher than 500 °C, but high average optical transmittance of 80-90% in the range of 390-1100 nm were still obtained.  相似文献   

6.
Quasi-crystal aluminum-doped zinc oxide (AZO) films were prepared by in situ radio frequency (RF) magnetron sputtering (sputtering without annealing) on glass substrates. The influence of deposition parameters on the optoelectronic and structural properties of the in situ deposited quasi-crystal AZO films was investigated in order to compare resulting samples. X-ray diffraction (XRD) patterns show that the quasi-crystal AZO thin films have excellent crystallization improved with increase of the RF power and substrate temperature, with an extremely preferential c-axis orientation exhibit sharp and narrow XRD pattern similar to that of single-crystal. Field emission scanning electron microscopy (FESEM) images show that quasi-crystal AZO thin films have uniform grains and the grain size increase with the increase of RF power and substrate temperature. Craters of irregular size with the columnar structure are observed in the quasi-crystal AZO thin films at a lower substrate temperature while many spherical shaped grains appeared at a higher substrate temperature. The average optical transmittance of all the quasi-crystal AZO films was over 85% in the 400-800 nm wavelength range. The resistivity of 4.176 × 10−4 Ω cm with the grain size of 76.4891 nm was obtained in the quasi-crystal AZO thin film deposited at 300 °C, under sputtering power of 140 W.  相似文献   

7.
Zinc selenide nanocrystalline thin films are grown onto amorphous glass substrate from an aqueous alkaline medium, using chemical bath deposition (CBD) method. The ZnSe thin films are annealed in air for 4 h at various temperatures and characterized by structural, morphological, optical and electrical properties. The as-deposited ZnSe film grew with nanocrystalline cubic phase alongwith some amorphous phase present in it. After annealing metastable nanocrystalline cubic phase was transformed into stable polycrystalline hexagonal phase with partial conversion of ZnSe into ZnO. The optical band gap, Eg, of as-deposited film is 2.85 eV and electrical resistivity of the order of 106-107 Ω cm. Depending upon annealing temperature, decrease up to 0.15 eV and 102 Ω cm were observed in the optical band gap, Eg, and electrical resistivity, respectively.  相似文献   

8.
The physical, chemical, electrical and optical properties of as-deposited and annealed CdIn2O4 thin films deposited using spray pyrolysis technique at different nozzle-to-substrate distances are reported. These films are characterized by X-ray diffraction, XPS, SEM, PL, Hall effect measurement techniques and optical absorption studies. The average film thickness lies within 600-800 nm range. The X-ray diffraction study shows that films exhibit cubic structure with orientation along (3 1 1) plane. The XPS study reveals that CdIn2O4 films are oxygen deficient. Room temperature PL indicates the presence of green shift with oxygen vacancies. The typical films show very smooth morphology. The best films deposited with optimum nozzle-to-substrate distance (NSD) of 30 cm, has minimum resistivity of 1.3 × 10−3 Ω cm and 2.6 × 10−4 Ω−1 figure of merit. The band gap energy varies from 3.04 to 3.2 eV with change in NSD for annealed films. The effect of NSD as well as the annealing treatment resulted into the improvement of the structural, electrical and optical properties of the studied CdIn2O4 thin films.  相似文献   

9.
Al-doped ZnO (AZO) transparent conducting films were successfully prepared on glass substrates by RF magnetron sputtering method under different substrate temperatures. The microstructural, electrical and optical properties of AZO films were investigated in a wide temperature range from room temperature up to 350 °C by X-ray Diffraction (XRD), Field-Emission Scanning Electron Microscopy (FESEM), High-Resolution Transmission Electron Microscopy (HRTEM), Hall measurement, and UV–visible meter. The nature of AZO films is polycrystalline thin films with hexagonal wurtzite structure and a preferred orientation along c-axis. The crystallinity and surface morphologies of the films are strongly dependent on the growth temperature, which in turn exerts a great effect on microstructural, electrical and optical properties of the AZO films. The atomic arrangement of AZO film having an wurtzite structure was indeed identified by the HRTEM as well as the Selected Area Electron Diffraction (SAED). The defect density of AZO film was investigated by HRTEM. The film deposited at 100 °C exhibited the relatively well crystallinity and the lowest resistivity of 3.6 × 10−4 Ω cm. The average transmission of AZO films in the visible range is all over 85%. More importantly, the low-resistance and high-transmittance AZO film was also prepared at a low temperature of 100 °C.  相似文献   

10.
Fluorine and hydrogen co-doped ZnO:Al (AZO) films were prepared by radio frequency (rf) magnetron sputtering of ZnO targets containing 1 wt.% Al2O3 on Corning glass at substrate temperature of 150 °C with Ar/CF4/H2 gas mixtures, and the structural, electrical and optical properties of the as-deposited and the vacuum-annealed films were investigated. In as-deposited state, films with fairly low resistivity of 3.9-4 × 10−4 Ω cm and very low absorption coefficient below 900 cm−1 when averaged in 400-800 nm could be fabricated. After vacuum-heating at 300 °C, the minimum resistivity of 2.9 × 10−4 Ω cm combined with low absorption loss in visible region, which enabled the figure of merit to uplift as high as 4 Ω−1, could be obtained for vacuum-annealed film. It was shown that, unlike hydrogenated ZnO films which resulted in degradation upon heating in vacuum at moderately high temperature, films with fluorine addition could yield improved electrical properties mostly due to enhanced Hall mobility while preserving carrier concentration level. Furthermore, stability in oxidizing environment could be improved by fluorine addition, which was ascribed to the filling effect of dangling bonds at the grain boundaries. These results showed that co-doping of hydrogen and fluorine into AZO films with low Al concentration could be remarkably compatible with thin film solar cell applications.  相似文献   

11.
By using the radio frequency-magnetron sputtering (RF-MS) method, both pure ZnO and boron doped ZnO (ZnO:B) thin films were deposited on glass substrates at ambient temperature and then annealed at 450 °C for 2 h in air. It is found that both ZnO and ZnO:B thin films have wurtzite structure of ZnO with (0 0 2) preferred orientation and high average optical transmission (≥80%). Compared with the resistivity of 6.3 × 102 Ω cm for ZnO film, both as-deposited and annealed ZnO:B films exhibit much lower resistivity of 9.2 × 10−3 Ω cm and 7.5 × 10−3 Ω cm, respectively, due to increase in the carrier concentration. Furthermore, the optical band gaps of 3.38 eV and 3.42 eV for as-deposited and annealed ZnO:B films are broader than that of 3.35 eV for ZnO film. The first-principles calculations show that in ZnO:B thin films not only the band gap becomes narrower but also the Fermi level shifts up into the conduction band with respect to the pure ZnO film. These are consistent with their lower resistivities and suggest that in the process of annealing some substituted B in the lattice change into interstitial B because of its smaller ion radius and this transformation widens the optical band gap of ZnO:B thin film.  相似文献   

12.
Structural, optical and electrical properties of CuIn5S8 thin films grown by thermal evaporation have been studied relating the effects of substrate heating conditions of these properties. The CuIn5S8 thin films were carried out at substrate temperatures in the temperature range 100-300 °C. The effects of heated substrate on their physico-chemical properties were investigated using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), optical transmission and hot probe method. X-ray diffraction revealed that the films are strong preferred orientation along the (3 1 1) plane upon substrate temperature 200 °C and amorphous for the substrate temperatures below 200 °C. No secondary phases are observed for all the films. The composition is greatly affected by heated substrate. From the optical transmission and reflection, an important absorption coefficient exceeds 105 cm−1 at 800 nm was found. As increasing the substrate temperature, the optical energy band gap decreases from 1.70 eV for the unheated films to 1.25 eV for the deposited films at 300 °C. It was found that CuIn5S8 thin film is an n-type semiconductor at 250° C.  相似文献   

13.
Si doped zinc oxide (SZO, Si3%) thin films are grown at room temperature on glass substrates under argon atmosphere, using direct current magnetron sputtering. The influence of the target substrate distances on structure, morphology, optical and electrical properties of SZO thin films is investigated. Experimental results show that the target substrate distances have a significance impact on the growth rate, crystal quality and electrical properties of the films, and have little impact on the optical properties of the films. SZO thin film samples grown on glasses are polycrystalline with a hexagonal wurtzite structure and have a preferred orientation along the c-axis perpendicular to the substrate. When the target substrate distance decreases from 76 to 60 mm, the degree of crystallization of the films increased, the grain size increases, and the resistivity of films decreases. However, when the distance continuously decreases from 60 to 44 mm, the degree of crystallization of the films decreased, the grain size decreases, and the resistivity of the films increases. SZO(3%) thin films deposited at a target substrate distance of 60 mm show the lowest resistivity of 5.53 × 10−4 Ω cm, a high average transmission of 94.47% in the visible range, and maximum band gap of 3.45 eV under 5 Pa of argon at sputtering power of 75 W for sputtering time of 20 min.  相似文献   

14.
Transparent conductive Al-doped zinc oxide (AZO) films with highly (0 0 2)-preferred orientation were deposited on quartz substrates at room temperature by RF magnetron sputtering. Optimization of deposition parameters was based on RF power, Ar pressure in the vacuum chamber, and distance between the target and substrate. The structural, electrical, and optical properties of the AZO thin films were investigated by X-ray diffraction, Hall measurement, and optical transmission spectroscopy. The 250 nm thickness AZO films with an electrical resistivity as low as 4.62 × 10−4 Ω cm and an average optical transmission of 93.7% in the visible range were obtained at RF power of 300 W, Ar flow rate of 30 sccm, and target distance of 7 cm. The optical bandgap depends on the deposition condition, and was in the range of 3.75-3.86 eV. These results make the possibility for light emitting diodes (LEDs) and solar cells with AZO films as transparent electrodes, especially using lift-off process to achieve the transparent electrode pattern transfer.  相似文献   

15.
Transparent conducting Al-doped ZnO (AZO) thin films have been deposited by sol-gel route. Starting from an aqueous solution of zinc acetate by adding aluminum chloride as dopant, a c-axis oriented polycrystalline ZnO thin film 100 nm in thickness could be spin-coated on glass substrates via a two-step annealing process under reducing atmosphere. The effects of thermal annealing and dopant concentration on the structural, electrical and optical properties of AZO thin films were investigated. The post-treated AZO films exhibited a homogenous dense microstructure with grain sizes less than 10 nm as characterized by SEM photographs. The annealing atmosphere has prominent impact on the crystallinity of the films which will in turn influence the electrical conductivity. By varying the doping concentrations, the optical and electrical properties could be further adjusted. An optimal doping concentration of Al/Zn = 2.25 at.% was obtained with minimum resistivity of 9.90 × 10−3 Ω-cm whereas the carrier concentration and mobility was 1.25 × 1020 cm−3 and 5.04 cm2 V−1 s−1, respectively. In this case, the optical transmittance in the visible region is over 90%.  相似文献   

16.
Ge thin films with a thickness of about 110 nm have been deposited by electron beam evaporation of 99.999% pure Ge powder and annealed in air at 100-500 °C for 2 h. Their optical, electrical and structural properties were studied as a function of annealing temperature. The films are amorphous below an annealing temperature of 400 °C as confirmed by XRD, FESEM and AFM. The films annealed at 400 and 450 °C exhibit X-ray diffraction pattern of Ge with cubic-F structure. The Raman spectrum of the as-deposited film exhibits peak at 298 cm−1, which is left-shifted as compared to that for bulk Ge (i.e. 302 cm−1), indicating nanostructure and quantum confinement in the as-deposited film. The Raman peak shifts further towards lower wavenumbers with annealing temperature. Optical band gap energy of amorphous Ge films changes from 1.1 eV with a substantial increase to ∼1.35 eV on crystallization at 400 and 450 °C and with an abrupt rise to 4.14 eV due to oxidation. The oxidation of Ge has been confirmed by FTIR analysis. The quantum confinement effects cause tailoring of optical band gap energy of Ge thin films making them better absorber of photons for their applications in photo-detectors and solar cells. XRD, FESEM and AFM suggest that the deposited Ge films are composed of nanoparticles in the range of 8-20 nm. The initial surface RMS roughness measured with AFM is 9.56 nm which rises to 12.25 nm with the increase of annealing temperature in the amorphous phase, but reduces to 6.57 nm due to orderedness of the atoms at the surface when crystallization takes place. Electrical resistivity measured as a function of annealing temperature is found to reduce from 460 to 240 Ω-cm in the amorphous phase but drops suddenly to 250 Ω-cm with crystallization at 450 °C. The film shows a steep rise in resistivity to about 22.7 KΩ-cm at 500 °C due to oxidation. RMS roughness and resistivity show almost opposite trends with annealing in the amorphous phase.  相似文献   

17.
ZnO films doped with Ga (GZO) of varying composition were prepared on Corning glass substrate by radio frequency magnetron sputtering at various deposition temperatures of room temperature, 150, 250 and 400 °C, and their temperature dependent photoelectric and structural properties were correlated with Ga composition. With increasing deposition temperature, the Ga content, at which the lowest electrical resistivity and the best crystallinity were observed, decreased. Films with optimal electrical resistivity of 2-3 × 10−4 Ω cm and with good crystallinity were obtained in the substrate temperature range from 150 to 250 °C, and the corresponding CGa/(CGa + CZn) atomic ratio was about 0.049. GZO films grown at room temperature had coarse columnar structure and low optical transmittance, while films deposited at 400 °C yielded the highest figure of merit (FOM) due to very low optical absorption despite rather moderate electrical resistivity slightly higher than 4 × 10−4 Ω cm. The optimum Ga content at which the maximum figure of merit was obtained decreased with increasing deposition temperature.  相似文献   

18.
Transparent conducting SnO2:Cd thin films were prepared by RF reactive magnetron co-sputtering on glass slides at a substrate temperature of 500 °C using CdO as cadmium source. The films were deposited under a mixed argon/oxygen atmosphere. The structural, optical and electrical properties were analyzed as a function of the Cd amount in the target. The X-ray diffraction shows that polycrystalline films were grown with both the tetragonal and orthorhombic phases of SnO2. The obtained films have high transmittance and conductivity. The figure of merit of SnO2:Cd films are in the order of 10−3 Ω−1, which suggests that these films can be considered as candidates for transparent electrodes.  相似文献   

19.
Al-doped ZnO (AZO) films prepared at different substrate temperature and AZO films with intentional Zn addition (ZAZO) during deposition at elevated substrate temperature were fabricated by radio frequency magnetron sputtering on glass substrate, and the resulting structural, electrical, optical properties together with the etching characteristics and annealing behavior were comparatively examined. AZO films deposited at 150 °C showed the optimum electrical properties and the largest grain size. XPS analysis revealed that AZO films deposited at elevated temperature of 450 °C contained large amount of Al content due to Zn deficiency, and that intentional Zn addition during deposition could compensate the deficiency of Zn to some extent. It was shown that the electrical, optical and structural properties of ZAZO films were almost comparable to those of AZO film deposited at 150 °C, and that ZAZO films had much smaller etching rate together with better stability in severe annealing conditions than AZO films due possibly to formation of dense structure.  相似文献   

20.
In this work, we report the formation of CuInS2 thin films on glass substrates by heating chemically deposited multilayers of copper sulfide (CuS) and indium sulfide (In2S3) at 300 and 350 °C in nitrogen atmosphere at 10 Torr. CIS thin films were prepared by varying the CuS layer thickness in the multilayers with indium sulfide. The XRD analysis showed that the crystallographic structure of the CuInS2 (JCPDS 27-0159) is present on the deposited films. From the optical analysis it was estimated the band gap value for the CIS film (1.49 eV). The electrical conductivity varies from 3 × 10−8 to 3 Ω−1 cm−1 depending on the thickness of the CuS film. CIS films showed p-type conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号