首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In this study, we fabricated optically transparent and electrically conductive multi-walled carbon nanotube (MWCNT) thin films using a spray-coating technique. The transparency and the electrical resistance of thin film are dependent on the nanotube content deposited on the polyethylene terephthalate (PET) substrate. Poly(acrylic acid) (PAA) and poly(N-vinyl pyrrolidone) (PVP) were used as adhesion promoters to improve MWCNT coating more significantly. The cross-linked polymer resulted in a superior bond between the MWCNTs and the substrates. The surface electrical resistance was significantly lower than the original sheet after nitric acid (HNO3) treatment because of the removed surfactant and the increased interconnecting networks of MWCNT bundles, thus improving the electrical and optical properties of the films. Stronger interaction between the MWCNTs and the substrates resulted in lower decomposition of the polymer chain and less amounts of MWCNTs separated into the HNO3 solution. The lower sheet electrical resistance of PVP/PAA-g-MWCNT conductive films on the PET substrate was because of a more complete conductive path with the cross-linked polymer than that without. Such an improved sheet of electrical resistance varied from 8.83 × 104 Ω/□ to 2.65 × 103 Ω/□ with 5.0 wt.% PVP/PAA-g-MWCNT sprayed on the PET after acid treatment.  相似文献   

2.
ZnO thin films were grown using Successive Ionic Layer Adsorption and Reaction (SILAR) method on glass substrates at room temperature. Annealing temperatures and film thickness effect on the structural, morphological, optical and electrical properties of the films were studied. For this as-deposited films were annealed at 200, 300, 400 and 500 °C for 30 min in oxygen atmosphere. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that the films are covered well with glass substrates and have good polycrystalline structure and crystalline levels. The film thickness effect on band gap values was investigated and band gap values were found to be within the range of 3.49-3.19 eV. The annealing temperature and light effect on electrical properties of the films were investigated and it was found that the current increased with increasing light intensity. The resistivity values were found as 105 Ω-cm for as-deposited films from electrical measurements. The resistivity decreased decuple with annealing temperature and decreased centuple with light emission for annealed films.  相似文献   

3.
NiO thin films have been grown on glass substrates by intermittent spray pyrolysis deposition of NiCl2·6H2O diluted in distilled water, using a simple “perfume atomizer”. The effect of the solution molarity on their properties was studied and compared to those of NiO thin films deposited with a classical spray system. It is shown that NiO thin films crystallized in the NiO structure are achieved after deposition. Whatever the precursor molarity, the grain size is around 25-30 nm. The crystallites are preferentially oriented along the (1 1 1) direction. All the films are p-type. However, the thickness and the conductivity of the NiO films depend on the precursor contraction. By comparison with the properties of films deposited by classical spray technique, it is shown that the critical precursor concentration, which induces strong thin films properties perturbations, is higher when a perfume atomizer is used. This broader stability domain can be attributed to better chlorides decomposition during the rest time used in the perfume atomizer technique.  相似文献   

4.
Indium tin oxide (ITO) thin films were deposited onto glass substrates by rf magnetron sputtering of ITO target and the influence of substrate temperature on the properties of the films were investigated. The structural characteristics showed a dependence on the oxygen partial pressure during sputtering. Oxygen deficient films showed (4 0 0) plane texturing while oxygen-incorporated films were preferentially oriented in the [1 1 1] direction. ITO films with low resistivity of 2.05 × 10−3 Ω cm were deposited at relatively low substrate temperature (150 °C) which shows highest figure of merit of 2.84 × 10−3 square/Ω⋅  相似文献   

5.
NiO nanoparticle thin films grown on Si substrates were irradiated by 107 MeV Ag8+ ions. The films were characterized by glancing angle X-ray diffraction and atomic force microscopy. Ag ion irradiation was found to influence the shape and size of the nanoparticles. The pristine NiO film consisted of uniform size (∼100 nm along major axis and ∼55 nm along minor axis) elliptical particles, which changed to also of uniform size (∼63 nm) circular shape particles on irradiation at a fluence of 3 × 1013 ions cm−2. Comparison of XRD line width analysis and AFM data revealed that the particles in the pristine films are single crystalline, which turn to polycrystalline on irradiation with 107 MeV Ag ions.  相似文献   

6.
Nanocrystalline indium tin oxide (ITO) thin films were prepared on clay-1 (Clay-TPP-LP-SA), clay-2 (Clay-TPP-SA) and glass substrates using ion-beam sputter deposition method. X-ray diffraction (XRD) patterns showed that the as-deposited ITO films on both clay-1 and clay-2 substrates were a mixture of amorphous and polycrystalline. But the as-deposited ITO films on glass substrates were polycrystalline. The surface morphologies of as-deposited ITO/glass has smooth surface; in contrast, ITO/clay-1 has rough surface. The surface roughnesses of ITO thin films on glass and clay-1 substrate were calculated as 4.3 and 83 nm, respectively. From the AFM and SEM analyses, the particle sizes of nanocrystalline ITO for a film thickness of 712 nm were calculated as 19.5 and 20 nm, respectively. Optical study showed that the optical transmittance of ITO/clay-2 was higher than that of ITO/clay-1. The sheet resistances of as-deposited ITO/clay-1 and ITO/clay-2 were calculated as 76.0 and 63.0 Ω/□, respectively. The figure of merit value for as-deposited ITO/clay-2 (12.70 × 10−3/Ω) was also higher than that of ITO/clay-1 (9.6 × 10−3/Ω), respectively. The flexibilities of ITO/clay-1 and ITO/clay-2 were evaluated as 13 and 12 mm, respectively. However, the ITO-coated clay-2 substrate showed much better optical and electrical properties as well as flexibility as compared to clay-1.  相似文献   

7.
Transparent conducting indium tin oxide/Au/indium tin oxide (ITO) multilayered films were deposited on unheated polycarbonate substrates by magnetron sputtering. The thickness of the Au intermediated film varied from 5 to 20 nm. Changes in the microstructure, surface roughness and optoelectrical properties of the ITO/Au/ITO films were investigated with respect to the thickness of the Au intermediated layer. X-ray diffraction measurements of ITO single layer films did not show characteristic diffraction peaks, while ITO/Au/ITO films showed an In2O3 (2 2 2) characteristic diffraction peak. The optoelectrical properties of the films were also dependent on the presence and thickness of the Au thin film. The ITO 50 nm/Au 10 nm/ITO 40 nm films had a sheet resistance of 5.6 Ω/□ and an average optical transmittance of 72% in the visible wavelength range of 400-700 nm. Consequently, the crystallinity, which affects the optoelectrical properties of ITO films, can be enhanced with Au intermediated films.  相似文献   

8.
Indium tin oxide (ITO) films approximately 120 nm thick were deposited onto unheated glass substrates by using reactive thermal evaporation (RTE) and in situ post-evaporation annealing in oxygen. We show that this simplified method can be used to produce high quality ITO thin films with low electrical resistivity (10−3 Ω cm) and high transmittance (approximately 80% at 550 nm). The refractive index is approximately 2.0 and the direct optical band gap of the films (above 3.0 eV) is in good agreement with previously reported values. Since this deposition method does not require heating the substrates or furnace annealing at high temperatures, it can be advantageous when it is necessary to decrease the thermal budget on underlying devices or layers.  相似文献   

9.
Bioactive glass (BG), calcium hydroxyapatite (HA), and ZrO2 doped HA thin films were grown by pulsed laser deposition on Ti substrates. An UV KrF* (λ = 248 nm, τ ≥ 7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The substrates were kept at room temperature or heated during the film deposition at values within the (400-550 °C) range. The depositions were performed in oxygen and water vapor atmospheres, at pressure values in the range (5-40 Pa). The HA coatings were heat post-treated for 6 h in a flux of hot water vapors at the same temperature as applied during deposition. The surface morphology, chemical composition, and crystalline quality of the obtained thin films were studied by scanning electron microscopy, atomic force microscopy, and X-ray diffractometry. The films were seeded for in vitro tests with Hek293 (human embryonic kidney) cells that revealed a good adherence on the deposited layers. Biocompatibility tests showed that cell growth was better on HA than on BG thin films.  相似文献   

10.
Without intentionally heating the substrates, indium tin oxide (ITO) thin films of thicknesses from 72 nm to 447 nm were prepared on polyethylene terephthalate (PET) substrates by DC reactively magnetron sputtering with pre-deposition substrate surfaces plasma cleaning. The dependence of structural, electrical, and optical properties on the films thickness were systematically investigated. It was found that the crystal grain size increases, while the transmittance, the resistivity, and the sheet resistance decreases as the film thickness was increasing. The thickest film (∼447 nm) was found of the lowest sheet resistance 12.6 Ω/square, and its average optical transmittance (400-800 nm) and the 550 nm transmittance was 85.2% and 90.4%, respectively. The results indicate clearly that dependence of the structural, electrical, and optical properties of the films on the film thickness reflected the improvement of the film crystallinity with the film thickness.  相似文献   

11.
We report the influence of crystal orientation on the magnetic properties of CoFe2O4 (CFO) thin films grown on single crystal Si (1 0 0) and c-cut sapphire (Al2O3) (0 0 0 1) substrates using pulsed laser deposition technique. The thickness was varied from 200 to 50 nm for CFO films grown on Si substrates, while it was fixed at 200 nm for CFO films grown on Al2O3 substrates. We observed that the 200 and 100 nm thick CFO-Si films grew in both (1 1 1) and (3 1 1) directions and displayed out-of-plane anisotropy, whereas the 50 nm thick CFO-Si film showed only an (1 1 1) orientation and an in-plane anisotropy. The 200 nm thick CFO film grown on an Al2O3 substrate was also found to show a complete (1 1 1) orientation and a strong in-plane anisotropy. These observations pointed to a definite relation between the crystalline orientation and the observed magnetic anisotropy in the CFO thin films.  相似文献   

12.
We prepared nickel oxide (NiO) thin films with p-type Cu dopants (5 at%) using a sol–gel solution process and investigated their structural, optical, and electrical characteristics by X-ray diffraction (XRD), atomic force microscopy (AFM), optical transmittance and current–voltage (IV) characteristics. The crystallinity of the NiO films improved with the addition of Cu dopants, and the grain size increased from 38 nm (non-doped) to 50 nm (Cu-doped). The transmission of the Cu-doped NiO film decreased slightly in the visible wavelength region, and the absorption edge of the film red-shifted with the addition of the Cu dopant. Therefore, the width of the optical band gap of the Cu-doped NiO film decreased as compared to that of the non-doped NiO film. The resistivity of the Cu-doped NiO film was 23 Ω m, which was significantly less than that of the non-doped NiO film (320 Ω m). Thus, the case of Cu dopants on NiO films could be a plausible method for controlling the properties of the films.  相似文献   

13.
ZnO thin film has been deposited on the glass substrate at a temperature of 200 °C using the filtered cathodic arc plasma (FCAP) technique with the oxygen flow rate of 1.0, 3.0, 5.0, 7.0, 9.0 and 10.0 sccm. The deposition processes are only held in pure oxygen atmosphere. The as-grown films exhibit a polycrystalline hexagonal wurtzite structure. With the oxygen flow rate increase, the crystallinity of the samples first increases and then decreases as measured by X-ray diffractometry (XRD). And the tensile stress exists in all the as-grown thin films. The small grain with a mean diameter of 13 nm is observed by the field emission scanning electron microscopy (FESEM). The electrical resistivity values of the thin films are very low ranging from 5.42 × 10−3 Ω cm to 4.0 × 10−2 Ω cm. According to the result from room temperature photoluminescence spectra measurement, the luminescent bands also depend on the oxygen supply.  相似文献   

14.
Highly conducting and transparent thin films of molybdenum-doped indium oxide were deposited on quartz by pulsed laser deposition. The effect of growth temperature and oxygen partial pressure on the structural, optical and electrical properties was studied. We find that the film transparency depends on the growth temperature. The average transmittance of the films grown at different temperatures is in range of 48-87%. The X-ray diffraction results show that the films grown at low temperature are amorphous while the films grown at higher temperature are crystalline. Electrical properties are found to be sensitive to both the growth temperature and oxygen pressure. Resistivity of the films decreases from 1.3 × 10−3 Ω cm to 8.9 × 10−5 Ω cm while mobility increases from 9 cm2/V s to 138 cm2/V s as the growth temperature increases from room temperature to 700 °C. However, with increase in oxygen pressure, resistivity increases but the mobility decreases after attaining a maximum. The temperature-dependent resistivity measurements show transition form semiconductor to metallic behavior. The film grown at 500 °C under an oxygen pressure of 1.0 × 10−3 mbar is found to exhibit high mobility (250 cm2/V s), low resistivity (6.7 × 10−5 Ω cm), and relatively high transmittance (∼90%).  相似文献   

15.
Ga-doped ZnO (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. Taguchi method was used to find the optimal deposition parameters including oxygen partial pressure, argon partial pressure, substrate temperature, and sputtering power. By employing the analysis of variance, we found that the oxygen and argon partial pressures were the most influencing parameters on the electrical properties of ZnO:Ga films. Under the optimized deposition conditions, the ZnO:Ga films showed acceptable crystal quality, lowest electrical resistivity of 2.61 × 10−4 Ω cm, and high transmittance of 90% in the visible region.  相似文献   

16.
ZnO thin films were prepared by pulsed laser deposition at room temperature on glass substrates with oxygen pressures of 10-30 Pa. The structural, electrical, and optical properties of ZnO films were studied in detail. ZnO films had an acceptable crystal quality with high c-axis orientation and smooth surface. The resistivity was in the 102 Ω cm order for ZnO films, with the electron concentration of 1016-1017 cm−3. All the films showed a high visible transmittance ∼90% and a high UV absorption about 90-100%. The UV emission ∼390 nm was observed in the photoluminescence spectra. The oxygen pressures in the 10-30 Pa range were suitable for room temperature growth of high-quality ZnO films.  相似文献   

17.
Transparent conducting nano-structured In doped zinc oxide (IZO) thin films are deposited on corning 7059 glass substrates by bipolar pulsed DC magnetron sputtering with variation of pulsed frequency and substrate temperature. Highly c-axis oriented IZO thin films were grown in perpendicular to the substrate on the 30 kHz and 500 °C. The IZO films exhibited surface roughness of 3.6 nm similar to the commercial ITO and n-type semiconducting properties with electrical resistivity (carrier mobility) of about 5 × 10−3 Ω cm (14 cm2/V s). The optical characterization showed high transmittance of over 85% in the UV-vis region and exhibited the absorption edge of near 350 nm. In micro-Raman spectra, the origin of two additional modes is attributed to the host lattice defect due to the addition of In dopant. These results suggest that the IZO film can possibly be applied to make transparent conducting electrodes for flat panel displays.  相似文献   

18.
In this work, Ba0.8Sr0.2TiO3 (BST) films were grown by pulse laser ablation on bare glass and platinized substrates. The crystalline phase was obtained with the help of laser-assisted annealing (LAA) at room temperature, in air environment. By adjusting LAA conditions, like frequency of the laser and number of shots, we were able to grow crack-free BST thin films with pure perovskite phase on bare glass and platinized substrates. The crystalline layer was found to be the same irrespective of the substrate used, c.a. 250 nm thick. The electric characteristics of the amorphous and LAA crystalline BST films deposited on platinized substrate were further studied and analyzed. While in amorphous films it was found that the oxygen defects are responsible for conduction, in LAA films the amorphous/crystalline interface layer plays an important role in current leakage.  相似文献   

19.
Room temperature deposition of PVP capped nanostructured NiO/Ni(OH)2 thin film, the morphological and optical characterizations by solution growth technique are reported. The nanostructured thin films which were deposited on optical glass substrates were annealed at different temperatures and then subjected to structural, morphological and optical characterizations. X-ray diffraction measurements of the films revealed that higher temperatures during the thermal treatment enhanced the crystallinity of the thin films. The SEM surface micrographs show non-interconnected uniformly deposited fibre-like structures with approximate lengths between 400 and 1200 nm. The optical band gap energy roughly decreased from about 2.7 eV to about 2.2 eV with thermal treatment. The absorbance of the thin films annealed at 300 and 400 °C was as high as 90% in the visible region of the electromagnetic spectrum. These materials could be useful in solar thermal conversion processes.  相似文献   

20.
Ti-doped ZnO (ZnO:Ti) thin films were deposited on the glass and Si substrates using radio frequency reactive magnetron sputtering. The effects of substrate on the microstructures and optical properties of ZnO:Ti thin films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer. The structural analyses of the films indicated that they were polycrystalline and had a hexagonal wurtzite structure on different substrates. When ZnO:Ti thin film was deposited on Si substrate, the film had a c-axis preferred orientation, while preferred orientation of ZnO:Ti thin film deposited on glass substrate changed towards (1 0 0). Finally, we discussed the influence of the oxygen partial pressures on the structural and optical properties of glass-substrate ZnO:Ti thin films. At a high ratio of O2:Ar of 18:10 sccm, the intensity of (0 0 2) diffraction peak was stronger than that of (1 0 0) diffraction peak, which indicated that preferred orientation changed with the increase of O2:Ar ratios. The average optical transmittance with over 93% in the visible range was obtained independent of the O2:Ar ratio. The photoluminescence (PL) spectra measured at room temperature revealed four main emission peaks located at 428, 444, 476 and 527 nm. Intense blue-green luminescence was obtained from the sample deposited at a ratio of O2:Ar of 14:10 sccm. The results showed that the oxygen partial pressures had an important influence for PL spectra and the origin of these emissions was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号