首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 933 毫秒
1.
This work is dedicated to studying the effects of nitrogen ions and ions of nitrogen and oxygen mixtures on the surface of titanium, titanium nitride, and molybdenum. The usage of magnetron sputtering systems as a model device to study the effect of reactive gases on elements of electric jet engines is proposed and justified. The processes of sputtering of a surface exposed to non-monoenergetic ion beams are studied. The effective sputtering yields of titanium, titanium nitride, and molybdenum induced by argon and nitrogen ions and ions of nitrogen-oxygen mixtures at various intermediate-energy ion beams are determined. It is shown that the sputtering yields of reactive-gas ions are significantly lower than the sputtering yields of inert gases.  相似文献   

2.
An original experimental method is developed for determining the sputtering coefficients of electrically conducting materials during bombardment by light gas ions at threshold energies. This information is very valuable in both purely scientific and practical terms. The basis of the method is a special field-ion-microscopic analysis regime. The procedure for measuring the sputtering coefficients includes cleaning the surface by field desorption and evaporation, with the subsequent work on an atomically clean and atomically smooth surface. The method permits identification of single vacancies on the irradiated surface, i.e., it is possible to count individual sputtered atoms. The method is tested on commercially pure tungsten, tungsten oxide, and a W-C mixed layer on tungsten under deuterium ion bombardment. The energy dependences of the sputtering coefficients of these materials for sputtering by deuterium ions at energies of 10–500 eV are obtained and analyzed. An important relationship between the energy threshold for sputtering and the conditions for oxidation of tungsten is found. The energy threshold for sputtering of an oxidized tungsten surface is 65 eV. The energy threshold for sputtering of the W-C mixed layer is almost equal to the corresponding value for pure tungsten. Zh. Tekh. Fiz. 69, 137–142 (September 1999)  相似文献   

3.
Investigations of the general characteristics and distinctive features of sputtering of A 3 B 5 materials (GaP, GaAs, GaSb, InP and InSb) under bombardment with N 2 + ions have been carried out. From the experimental data, dependences of the sputtering yield of these materials on the incidence angle and ion energy have been obtained and the surface relief patterns produced by target etching have been studied. It has been shown that the dependence on energy of the sputtering yield for GaP, GaAs, and InP can be adequately described by the Haffa-Switkovski formula for binary materials and Yudin’s approximation for elemental targets. Sputtering of GaSb and InSb proceeds in the surface layer recrystallization mode, and the sputtering yield agrees with calculations based on Onderlinden’s model. From a comparison of the experimental and calculated dependences, the surface bonding energies have been determined.  相似文献   

4.
A comparison of relative populations of ZnI and ZnII levels excited in equilibrium plasma, sputtering, gas-phase single collision, and beam foil sources is presented, and includes data on the first reported excitation studies under single collision conditions for a (transition metal atom)-(transition metal ion) interaction. A search for continuum emission from atomic chromium, like that seen during sputtering of chromium metal, produced a negative result.  相似文献   

5.
The MsHc value is considered to be a key factor in high-density recording, and controlling the microstructure on the magnetic underlayer was found to be an effective way of increasing the MsHc of the amorphous TbFeCo magneto-optical (MO) medium. In this paper, we investigate the TbFeCo film's magnetic properties and the effects on the microcolumnar structure, which depends on the sputtering conditions of using various sputtering gases including Ar, Kr, and Xe, and the recording characteristics of TbFeCo memory layers. With heavy sputtering gases such as Kr or Xe, the columnar structure can be prepared in a TbFeCo film at a pressure lower than 1.0 Pa. The columnar structure of a recording layer can be effectively formed thanks to the effects of the magnetic underlayer, which has a fine surface even in the sputtering process in which Xe gas is used. The above applies to the sputtering process in which Ar gas is used. Also, when Xe gas is used in the sputtering process, coercivity Hc is increased through the formation of a well-segregated microcolumnar structure built on domain wall pinning sites, and we obtain a large MsHc and a high squareness ratio of the Kerr-hysteresis loop. Our results indicate that processing a TbFeCo film with heavy sputtering gases is suitable for tiny mark stability because the temperature gradient of Hc is increased. The objective of the low-pressure sputtering process using Xe gas to produce the columnar structure is to achieve ultra-high-density recording with tiny mark stability in the TbFeCo medium. This has been confirmed with magnetic force microscope (MFM) images of stable tiny marks recorded on TbFeCo film.  相似文献   

6.
Atomic recoil events at and near {001} surfaces of Ni3Al due to elastic collisions between electrons and atoms have been simulated by molecular dynamics to obtain the sputtering threshold energy as a function of atomic species, recoil direction and atomic layer of the primary recoil atom. The minimum sputtering energy occurs for adatoms and is 3.5 and 4.5?eV for Al and Ni adatoms on the Ni–Al surface (denoted ‘M’), respectively, and 4.5?eV for both species on the pure Ni surface (denoted ‘N’). For atoms within the surface plane, the minimum sputtering energy is 6.0?eV for Al and Ni atoms in the M plane and for Ni atoms in the N surface. The sputtering threshold energy increases with increasing angle, θ, between the recoil direction and surface normal, and is almost independent of azimuthal angle, ?, if θ<60°; it varies strongly with ? when θ>60°, with a maximum at ??=?45° due to ?{110}? close-packed atomic chains in the surface. The sputtering threshold energy increases significantly for subsurface recoils, except for those that generate efficient energy transfer to a surface atom by a replacement collision sequence. The implications of the results for the prediction of the mass loss due to sputtering during microanalysis in a FEG STEM are discussed.  相似文献   

7.
Polycrystalline Ni-Mn-Ga thin films were deposited by the d.c. magnetron sputtering on well-cleaned substrates of Si(1 0 0) and glass at a constant sputtering power of 36 W. We report the influence of sputtering pressure on the composition, structure and magnetic properties of the sputtered thin films. These films display ferromagnetic behaviour only after annealing at an elevated temperature and a maximum saturation magnetization of 335 emu/cc was obtained for the films investigated. Evolution of martensitic microstructure was observed in the annealed thin films with the increase of sputtering pressure. The thermo-magnetic curves exhibited only magnetic transition in the temperature range of 339-374 K. The thin film deposited at high sputtering pressure of 0.025 mbar was found to be ordered L21 austenitic phase.  相似文献   

8.
叶子燕  张庆瑜 《中国物理》2001,10(4):329-334
We have studied the influence of incident atoms with low energy on the Pt(100) surface by molecular dynamics simulation. The interaction potential obtained by the embedded atom method (EAM) was used in the simulation. The incident energy changes from 0.1eV to 200eV, and the target temperature ranges from 100 to 500 K. The target scales are 6×6×4 and 8×8×4 fcc cells for lower and higher incident energies, respectively. The adatom, sputtering, vacancy and backscattering yields are calculated. It was found that there is a sputtering threshold for the incident energy. When the incident energy is higher than the sputtering threshold, the sputtering yield increases with the increase of incident energy, and the sputtering shows a symmetrical pattern. We found that the adatom and vacancy yields increase as the incident energy increases. The vacancy yields are much higher than those obtained by Monte Carlo simulation. The dependence of the adatom and sputtering yields on the incident energy and the relative atomistic mechanisms are discussed.  相似文献   

9.
Silicon carbon nitride thin films were deposited on Co-Cr alloy under varying deposition conditions such as sputtering power and the partial pressure ratio of N2 to Ar by radio frequency and direct current magnetron sputtering techniques. The chemical bonding configurations, surface topography and hardness were characterized by means of X-ray photoelectron spectroscopy, atomic force microscopy and nano-indentation technique. The sputtering power exhibited important influence on the film composition, chemical bonding configurations and surface topography, the electro-negativity had primary effects on chemical bonding configurations at low sputtering power. A progressive densification of the film microstructure occurring with the carbon fraction was increased. The films prepared by RF magnetron sputtering, the relative content of the Si-N bond in the films increased with the sputtering power increased, and Si-C and Si-Si were easily detachable, and C-O, N-N and N-O on the film volatile by ion bombardment which takes place very frequently during the film formation process. With the increase of sputtering power, the films became smoother and with finer particle growth. The hardness varied between 6 GPa and 11.23 GPa depending on the partial pressure ratio of N2 to Ar. The tribological characterization of Co-Cr alloy with Si-C-N coating sliding against UHMWPE counter-surface in fetal bovine serum, shows that the wear resistance of the Si-C-N coated Co-Cr alloy/UHMWPE sliding pair show much favourable improvement over that of uncoated Co-Cr alloy/UHMWPE sliding pair. This study is important for the development of advanced coatings with tailored mechanical and tribological properties.  相似文献   

10.
Gas flow sputtering is a sputter-deposition method that enables soft and high-rate deposition even for oxides or nitrides. It involves sputtering at a high pressure of around 100 Pa and hollow cathode discharge in a tubular or parallel plate target with forced Ar flow. Depending on the sputtering conditions, various structures of magnetic materials are obtained, and some examples are shown in this paper. Co-Pt and Fe nanopillars are fabricated using a tubular target with a large inner diameter (6-40 mm). Fe nanoparticles with diameters ranging from a few nanometers to 150 nm are fabricated using a tubular target with a small inner diameter (5 mm). Magnetite epitaxial thin films are fabricated on MgO and GaAs substrates by substrate heating.  相似文献   

11.
To study the ion sputtering rates of W-, Ti- and Cr-carbides, trilayer structures comprising C-graphite (59 nm)/WC (50 nm)/W (38 nm), C-graphite (56 nm)/TiC (40 nm)/Ti (34 nm) and C-graphite (46 nm)/C3C2 (60 nm)/Cr (69 nm) with a tolerance ±2% were sputter deposited onto smooth silicon substrates. Their precise structural and compositional characterization by transmission electron microscopy (TEM), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) revealed that the WC and Cr3C2 layers were amorphous, while the TiC layer had a polycrystalline structure. The ion sputtering rates of all three carbides, amorphous carbon and polycrystalline Cr, Ti and W layers were determined by means of Auger electron spectroscopy depth profiling as a function of the angle of incidence of two symmetrically inclined 1 keV Ar+ ion beams in the range between 22° and 82°. The sputtering rates were calculated from the known thicknesses of the layers and the sputtering times necessary to remove the individual layers. It was found that the sputtering rates of carbides, C-graphite and metals were strongly angle dependent. For the carbides in the range between 36° and 62° the highest ion sputtering rate was found for Cr3C2 and the lowest for TiC, while the values of the sputtering rates for WC were intermediate. The normalized sputtering yields calculated from the experimentally obtained data for all three carbides followed the trend of theoretical results obtained by calculation of the transport of ions in solids by the SRIM code. The sputtering yields are also presented in terms of atoms/ion. Our experimental data for two ion incidence angles of 22° and 49° and reported values of other authors for C-graphite and metals are mainly inside the estimated error of about ±20%. The influence of the ion-induced surface topography on the measured sputtering yields was estimated from the atomic force microscope (AFM) measurements at the intermediate points of the corresponding layers on the crater walls formed during depth profiling.  相似文献   

12.
Intrinsic zinc oxide films,normally deposited by radio frequency(RF) sputtering,are fabricated by direct current(DC) sputtering.The oxygen-deficient targets are prepared via a newly developed double crucible method.The 800-nm-thick film obtaines significantly higher carrier mobility compareing with that of the 800-nm-thick ZnO film.This is achieved by the widely used RF sputtering,which favors the prevention of carrier recombination at the interfaces and reduction of the series resistance of solar cells.The optimal ZnO film is used in a Cu(ln,Ga) Se2(CIGS) solar cell with a high efficiency of 11.57%.This letter demonstrates that the insulating ZnO films can be deposited by DC sputtering from oxygen-deficient ZnO targets to lower the cost of thin film solar cells.  相似文献   

13.
A new empirical formula for the sputtering yield at the normal incidence has been proposed. It is found that the new empirical formula can predict well the energy-dependence of the sputtering yield for various ion-target combinations. Another interesting conclusion is that one of the adjustable parameters of the new formula shows the Z2-oscillation.  相似文献   

14.
ZnO has attracted attention as a candidate material for ultraviolet light-emitting devices. Its 3.37 -eV band gap is comparable to that of GaN, and single crystal substrates can be grown. Control of p-type conductivity in ZnO is under study in several laboratories including ours. We report streak camera measurements of time-resolved luminescence and stimulated emission excited in single crystal, film, and particle samples under excitation by 300 fs laser pulses at temperatures from 17 K to 295 K. We also describe p-n junctions formed by control of oxygen pressure in reactive sputtering of ZnO films, and results of introducing nitrogen during reactive sputtering.  相似文献   

15.
黄阀  李宝河  杨涛  翟中海  朱逢吾 《物理学报》2005,54(4):1841-1846
采用磁控溅射法制备了性能优良的以Pt为缓冲层的[Co8585Cr1515/Pt]2020 多层膜,研究了溅射气压对[Co8585Cr1515/Pt]2020多层膜微结构和磁性的 影响.研究结果表明,Ar溅射气压对[Co8585Cr1515/Pt]2020多层膜的微结构 、垂直磁各向异性和矫顽力有重要的影响 关键词: 溅射气压 多层膜 垂直磁各向异性 有效磁各向异性常数  相似文献   

16.
Sputtering of ZnO, TiO2, CdSe and GaP induced by 10 ns laser pulses from a tunable dye laser has been investigated. It is shown that all of these materials exhibit the following characteristics: (1) non-linear dependence of sputtering yield on the excitation laser fluence, (2) existence of the threshold laser fluence, (3) dependence of the threshold laser fluence on laser wavelength, and (4) non-Maxwellian velocity distribution of sputtered particles. These results indicate that the laser-induced sputtering near threshold fluences is not a thermal effect but an effect of dense electron-hole plasma.  相似文献   

17.
采用DC磁控溅射法,分别在p-Si(111)和玻璃基片上沉积AlN薄膜。利用X射线衍射(XRD)、X射线能谱仪(EDS)、原子力显微镜(AFM)、台阶仪\紫外/可见分光光度计和傅里叶变换红外光谱仪(FTIR)分析了薄膜的结构组分、表面形貌、膜厚、光学性能和红外吸收特性。结果表明:溅射电流对AlN薄膜的生成有很大的影响,当电流增加到0.40A时,薄膜中出现明显的h-AlN(100)和AlN(110)衍射峰;样品的最大高度都小于30nm;样品在250-1000nm波长范围内具有较高的透射率,当溅射电流为0.4A时,薄膜的禁带宽度约为5.94eV;在677.12cm-1处出现强烈的吸收峰。  相似文献   

18.
Molecular dynamics simulations of the 20-keV C60 bombardment at normal incidence of Si, SiC, diamond and graphite targets were performed. The unique feature of these targets is that strong covalent bonds can be formed between carbon atoms from the C60 projectile and atoms in the solid material. The mesoscale energy deposition footprint (MEDF) model is used to gain physical insight into how the sputtering yields depend on the substrate characteristics. A large proportion of the carbon atoms from the C60 projectile are implanted into the lattice structure of the target. The sputtering yield from SiC is ∼twice that from either diamond or Si and this can be explained by both the region of the energized cylindrical tract created by the impact and the number density. On graphite, the yield of sputtered atoms is negligible because the open lattice allows the cluster to deposit its energy deep within the solid. The simulations suggest that build up of carbon with a graphite-like structure would reduce any sputtering from a solid with C60+ bombardment.  相似文献   

19.
Zinc oxide thin films were prepared by dc (direct current) and rf (radio frequency) magnetron sputtering on glass substrates. ZnO films produced by dc sputtering have a high resistance, while the films produced using rf sputtering are significantly more conductive. While the conductive films have a compact nodular surface morphology, the resistive films have a relatively porous surface with columnar structures in cross section. Compared to the dc sputtered films, rf sputtered films have a microstructure with smaller d spacing, lower internal stress, higher band gap energy and higher density. Dependence of conductivity on the deposition technique and the resulting d spacing , stress, density, band gap, film thickness and Al doping are discussed. Correlations between the electrical conductivity, microstructural parameters and optical properties of the films have been made. PACS 73.25.+i; 81.15.cd; 81.05.ys  相似文献   

20.
Sputtering can be defined as the process whereby particles leave the surface as a direct consequence of the presence of incident radiation. When particles leave the surface as a result of receiving momentum from the collision cascade induced by the incident radiation, the process is called “physical sputtering”. If the incoming radiation (ions, electrons, or photons) induces a chemical reaction which leads to the subsequent desorp-tion of particles, the process could be classified as “chemical sputtering”. There are a number of molecules such as CH4, CF4, CF3H, CF3CI, etc., whose binding energy to a large variety of surfaces is believed to be only a few kcal/mole. Therefore, these molecules will not remain absorbed at room temperature. Consequently, if they are generated from surface atoms by radiation-induced processes, they will almost immediately desorb into the gas phase. This process is one type of chemical sputtering. Recent data obtained in plasma environments suggest that this type of reaction is a widely occurring phenomena: however, few systematic quantitative investigations of the subject have been completed. In this paper we will review the evidence for chemical sputtering and discuss mechanisms based on experimental information obtained for the chemical sputtering of silicon and SiO2 under argon ion bombardment in the presence of a molecular beam of XeF2. Under these conditions, 25 or more silicon atoms can leave the surface per incident argon ion. About 75% of the silicon is emitted as SiF4 (gas) and the rest leaves as silicon atoms or SiFx radicals. The total yield (silicon plus fluorine) is greater than 100 atoms/ion. The measured yields are a strong function of XeF2 flux and a much weaker function of ion energy in the range 500-5000 eV. The chemical-sputtering yield for SiO2 is smaller than that of silicon by about an order of magnitude, but it is still larger than the physical-sputtering yield. Moreover, SiO2 is also sputtered by electrons. These results indicate that the incident radiation induces a chemical reaction between silicon and adsorbed fluorine which produces SiF4, and the SiF4 is subsequently desorbed into the gas phase. We define this process as chemical sputtering. The large yields are probably a consequence of weak binding between the surface and the SiF4 molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号