首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New tungsten ion source is produced by using single and double-pulse laser ablation system. Combined collinear Nd:YAG laser beams(266+1064 nm) are optimized to focus on the sample in air. Optimization of the experimental parameters is achieved to enhance the signal-to-noise ratio of the emission spectra. The velocity distribution of the emitted plasma cloud is carefully measured. The influences of the potential difference between the bias electrodes, laser wavelength and intensity on the current signal are also studied. The results show that the increase in the tungsten ion velocity under the double-pulse lasers causes the output current signal to increase by about three folds. The electron density and temperature are calculated by using the Stark-broadened line profile of tungsten line and Boltzmann plot method of the upper energy levels, respectively. The signal intensity dependence of the tungsten ion angular distribution is also analyzed. The results indicate that the double-pulse laser ablation configuration is more potent technique for producing more metal ion source deposition, thin film formation, and activated plasma-facing component material.  相似文献   

2.
In order to investigate the double-pulse ablation mechanism, two parallel but non-collinear laser beams, delayed with respect to each other by 1 μs, were focussed on an aluminium sample, so that a lateral distance of 600 microns exists between the centres of the two craters and no superposition of the laser-ablation zones is present. The use of such configuration results in a signal and in a plasma mass enhancement with respect to the single-pulse case almost equal to that obtained in the double-pulse collinear case. However, such a non-collinear geometry evidences a much more effective drilling of the surface. Such unexpected drilling seems to be related to a hydrodynamic drainage out of aerosol and molten material, hindering its re-deposition in and around the crater.  相似文献   

3.
陈明  李爽  崔清强  刘向东 《物理学报》2013,62(16):165202-165202
脉冲激光束在低真空(约2 Pa)环境下聚焦到高纯Zn靶表面, 烧蚀区域不仅有中心深孔的宏观损伤, 而且还发现大量微米量级的类似足球形状的金属Zn球体结构附着生长在孔洞内侧表面. 实验过程中采用等离子体光谱诊断技术研究宏观和微观损伤对后续脉冲激光的影响程度. 与聚焦于金属Zn平滑表面相比, 宏观损伤可以使后续激光诱导的Zn原子334.5 nm谱线强度提高10.3%, 在此基础上大量Zn微米球体附着在内表面可以使谱线强度再提高34.3%. 因此, 推断这些金属Zn微球表面镶嵌着光洁的纳米量级六边形和五边形小平面, 可以对后续脉冲激光产生镜面反射, 使得激光能量汇聚并耦合增强, 提高烧蚀效率. 实验结果还表明, 这些微米球体的数目随着激光脉冲次数的增加而增多, 使得后续激光能够诱导产生更为致密高温的等离子体. 研究结果有望为激光-金属微孔技术提供新思路. 关键词: 脉冲激光烧蚀 微纳米结构 激光诱导等离子体  相似文献   

4.
Poly(methyl methacrylate) (PMMA) was irradiated using a medical UV-ArF excimer laser operating at the fundamental wavelength of 193 nm. Characterized by a beam diameter of 1.8 mm and energy of 180 mJ with a Gaussian energy profile, it operates in a single mode or at 30 Hz repetition rate. Mechanical profilometry was carried out on ablation craters in order to study the rugosity and the ablation yield in the various operative conditions. Optical transmission and reflection measurements at six wavelengths were conducted in order to characterize the optical properties of the irradiated surfaces. Measured crater depths in PMMA were lower with respect to the forecasted ones in corneal tissue, while the lateral crater aperture was maintained. The rugosity produced at the crater bottom after irradiation was about 0.3 μm, and the ablation yield was about 1015 molecules/laser pulse, while etching depth and diameter show a roughly linear dependence on the number of laser shots. These experiments constitute a base for deeper clinical investigations.  相似文献   

5.
纳秒激光烧蚀铝材料的二维数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
张朋波  秦颖  赵纪军  温斌 《物理学报》2010,59(10):7120-7128
为了探索纳秒脉冲强激光与材料的相互作用机理,建立了二维数值模型,利用有限差分法对纳秒激光脉冲烧蚀金属铝的温度场进行了数值模拟.通过对比不同脉宽、光斑和能量下激光引起的温度场随时间的演化,发现脉冲的前期温度升高比后期快.等温图显示中心温度升高最快,烧蚀轮廓与激光束形状相似,烧蚀深度达1—5 μm.脉宽越长,烧蚀越窄和越深,光斑越大,烧蚀越宽和越浅.数值研究表明,1)激光的脉冲形状、脉宽和功率密度直接影响烧蚀的形状和深度,2)激光功率密度在109 W/cm2量级烧蚀  相似文献   

6.
Laser drilling of stainless steel with nanosecond double-pulse   总被引:1,自引:0,他引:1  
Nanosecond double-pulse laser drilling is reported in this paper. The double-pulse herein represents two closely conjoint pulses with 21 ns pulse duration and about 52 ns interpulse separation, which are acquired by temporal pulse shaping. Percussion drilling with such double-pulse is performed in stainless steel samples with different laser fluences, sample's thickness, repetition rates and ambient pressures. The experimental results show that the drilling rates of double-pulse drilling are more than one order of magnitude higher than that of conventional single-pulse drilling in air. Differences in the processing results between single-pulse and double-pulse with various processing parameters are investigated. In addition the ablation mechanisms of the double-pulse drilling are discussed.  相似文献   

7.
The production of nanoparticles via femtosecond laser ablation of gold and copper is investigated experimentally involving measurements of the ablated mass, plasma diagnostics, and analysis of the nanoparticle size distribution. The targets were irradiated under vacuum with a spot of uniform energy distribution. Only a few laser pulses were applied to each irradiation site to make sure that the plume expansion dynamics were not altered by the depth of the laser-produced crater. Under these conditions, the size distribution of nanoparticles does not exhibit a maximum and the particle abundance monotonously decreases with size. Furthermore, the results indicate that two populations of nanoparticles exist within the plume: small clusters that are more abundant in the fast frontal plume component and larger particles that are located mostly at the back. It is shown that the ablation efficiency is strongly related to the presence of nanoparticles in the plume.  相似文献   

8.
The ablation debris and raised rim, as well as residual stress and deep crater will be formed during the mitigation of damage site with a CO2 laser irradiation on fused silica surface, which greatly affects the laser damage resistance of optics. In this study, the experimental study combined with numerical simulation is utilized to investigate the effect of the secondary treatment on a mitigated site by CO_2 laser irradiation. The results indicate that the ablation debris and the raised rim can be completely eliminated and the depth of crater can be reduced. Notable results show that the residual stress of the mitigation site after treatment will reduce two-thirds of the original stress. Finally, the elimination and the controlling mechanism of secondary treatment on the debris and raised rim, as well as the reasons for changing the profile and stress are analyzed. The results can provide a reference for the optimization treatment of mitigation sites by CO_2 laser secondary treatment.  相似文献   

9.
This paper presents the results of experimental study on the effect of electric field on the ablation rate during the nanosecond pulsed laser ablation of aluminum and copper in deionized water. The effect of electric field strength on the material removal rate and its mechanisms were investigated both in the electric field parallel and perpendicular to the laser beam path schemes. The ablation rate was estimated by measuring the dimensions of craters on the target induced by laser. The crater dimensions and optical properties of the produced colloidal nanoparticles were characterized by means of optical microscopy and UV–Vis absorption spectroscopy, respectively. The results indicate that pulsed laser ablation in the presence of an electric field significantly leads to higher material removal rate. The experimental results also confirm that the crater geometry extremely depends on the direction of the electric field with respect to the laser beam direction. The UV–Vis spectra show that the nanoparticles production efficiency increases with increasing the electric field strength.  相似文献   

10.
The interaction of 40 ps pulse duration laser emitting at 532 nm wavelength with human dental tissue (enamel, dentin, and dentin–enamel junction) has been investigated. The crater profile and the surface morphology have been studied by using a confocal auto-fluorescence microscope (working in reflection mode) and a scanning electron microscope. Crater profile and crater morphology were studied after applying consecutive laser pulses and it was found that the ablation depth increases with the number of consecutive pulses, leaving the crater diameter unchanged. We found that the thermal damage is reduced by using short duration laser pulses, which implies an increased retention of restorative material. We observe carbonization of the irradiated samples, which does not imply changes in the chemical composition. Finally, the use of 40 ps pulse duration laser may become a state of art in conservative dentistry.  相似文献   

11.
通过双温方程对飞秒单脉冲与双脉冲照射金薄膜进行了计算模拟分析,得到了金靶的电子温度和晶格温度随着时间空间的变化。在同样激光能量密度下,单脉冲与双脉冲使得金膜温度的变化表明双脉冲使得更多的激光能量渗透到靶材内部,这些能量可以使得烧蚀深度更深,有利于提高激光烧蚀靶材的效率。计算结果显示随着激光能量密度的增加熔化面深度逐渐增加,单脉冲与双脉冲熔化面深度的变化明显不同。在激光能量密度高于损伤阈值附近,单脉冲的烧蚀深度大于双脉冲的烧蚀深度,随着激光能量密度增加,双脉冲的烧蚀深度将大于单脉冲的烧蚀深度。  相似文献   

12.
High intensities laser pulses are capable to generate a crater when irradiating metal targets. In such condition, after each irradiation significant ablation occurs on the target surface and as a result a crater is formed. The crater characterization is very important specifically for some applications such as micromachining. In this paper, the crater formation in metal targets was studied experimentally. The planar aluminum 5052 targets were irradiated by frequency doubled (532 nm), Q-switched Nd:YAG (∼6 ns) laser beam in ambient air and distilled water. A crater was produced after each irradiation and it was characterized by an optical microscope. Different laser intensities as well as pulse trains were applied for crater formation. The effects of laser characteristics in crater geometry were examined. The depth of the craters was measured by optical microscope and the diameter (width) was characterized by processing of the crater image. The results were explained in terms of ablation threshold and plasma shielding. The results show that the crater geometry extremely depends on the laser pulse intensity, the number of laser pulses, and ambient.  相似文献   

13.
Emission characteristics of gadolinium (Gd) oxide are studied, using ns and fs laser pulses for ablation in double-pulse laser induced breakdown spectroscopy (LIBS). In the current conditions of pulse energy and signal detection timing, emission intensity enhancement in the reheating mode is 25-fold, but little effect can be observed in a pre-pulse mode. It is shown that the optimum focus position of the ablation pulse is about 5 mm apart from the sample surface in the reheating mode. Although little emission can be observed in the single-pulse configuration with fs ablation pulses, the intense emission can be observed in the reheating mode in the double-pulse configuration.  相似文献   

14.
In laser ablation of biological tissue, tomography of the tissue surface is necessary for measurement of the crater shape and the crater depth. In this paper, we demonstrate in-situ observation of biological-tissue surface in laser ablation by optical coherence tomography (OCT). Depth of a crater of human tooth is measured by these OCT images, and then the ablation rate of 0.21 μm/pulse is determined.  相似文献   

15.
The ultra-short laser metal ablation is a very complex process, the complete simulation of which requires applications of complicated hydrodynamics or molecular dynamics models, which, however, are often time-consuming and difficult to apply. For many practical applications, where the laser ablation depth is the main concern, a simplified model that is easy to apply but at the same time can also provide reasonably accurate predictions of ablation depth is very desirable. Such a model has been developed and presented in this paper, which has been found to be applicable for laser pulse duration up to 10 ps based on comparisons of model predictions with experimental measurements.  相似文献   

16.
Femtosecond laser (Ti:sapphire, 100 fs pulse duration) ablation of silicon in air was compared with nanosecond laser (Nd:YAG, 3 ns pulse duration) ablation at ultraviolet wavelength (266 nm). Laser ablation efficiency was studied by measuring crater depth as a function of pulse number. For the same number of laser pulses, the fs-ablated crater was about two times deeper than the ns-crater. The temperature and electron number density of the laser-induced plasma were determined from spectroscopic measurements. The electron number density and temperature of fs-induced plasmas decreased faster than ns-induced plasmas due to different energy deposition mechanisms. Images of the laser-induced plasma were obtained with femtosecond time-resolved laser shadowgraph imaging. Plasma expansion in both the perpendicular and the lateral directions were compared. PACS 52.38.Mf; 52.30.-q  相似文献   

17.
The average ablation depth per pulse of silver foil by 130 fs laser pulses has been measured in vacuum over a range of three orders of magnitude of pulse fluence up to 900 J cm−2. In addition, double pulses with separations up to 3.4 ns have been used to probe time scales of relevance for femtosecond ablation. The double pulse ablation depth, when each pulse fluence is 0.7 J cm−2, falls to that of a single pulse as the pulse separation is increased from 0 ps to 700 ps. This time scale decreases to only 4 ps as the fluence is increased to 11 J cm−2. It then jumps to 500 ps across a transition fluence where the slope of the ablation depth versus logarithmic fluence characteristic changes abruptly to a higher value. In addition, for pulse separations near 1000 ps, the second pulse can cause re-deposition of ejecta from the first pulse resulting in a double pulse ablation depth only 40% that of the first pulse alone. This has important implications for the interpretation of double pulse femto-LIBS intensities. Our results suggest that the optical properties of nano or mesoparticles play a significant role in double pulse ablation with large pulse separations.  相似文献   

18.
Laser ablation of nickel, gold and copper thin film on glass substrates has been investigated using a nanosecond pulsed Nd:YAG laser operating at 355 nm in air with a Gaussian intensity profile. The exact beam profile was measured through mechanical scanning with a photodiode. A small beam defect was observed, which can affect the machining performance at higher pulse energies. The ablation thresholds of the films were calculated from the crater diameter values. The effect of the pulse repetition rate and the film thickness was also studied. At high pulse repetition rates heat accumulation was observed and the ablation threshold decreased with the film thickness. Both cases resulted in higher diameters.  相似文献   

19.
罗乐乐  窦志国  叶继飞 《物理学报》2018,67(18):187901-187901
选择含能聚合物聚叠氮缩水甘油醚(GAP)作为激光烧蚀微推力器的工质,分析了红外染料掺杂对激光烧蚀GAP工质推进性能的影响.通过对比掺杂红外染料GAP在不同激光功率密度、掺杂浓度、靶材厚度和激光烧蚀模式下的推进性能数据和烧蚀羽流,初步探索了掺杂红外染料GAP工质的推进性能优化方式.实验结果表明:透射式激光烧蚀模式下,激光能量的指数衰减特性和掺杂红外染料GAP的强黏性使得烧蚀羽流中易存在未充分烧蚀的工质; GAP的推进性能受红外染料掺杂浓度和靶材厚度的综合影响,当靶材厚度与激光吸收深度接近时,靶材充分吸收激光能量使中心烧蚀区达到化学能释放的温度阈值,同时沿激光传播方向未充分烧蚀的质量最少,此时推进性能达到最优值.反射式下掺杂红外染料的聚合物的激光烧蚀过程遵循"先吸收激光能量先喷射"的规律,工质分解充分,推进性能优于透射式.  相似文献   

20.
In this paper, a 3D two-temperature model is introduced to investigate femtosecond ablation on aluminum film. 3D temperature evolutions for both electrons and lattice are obtained, which present us a vivid view of the energy transformation process during femtosecond ablation. Simulated 3D ablation craters irradiated by a single pulse with different energy are acquired, from which we can easily and precisely predict crater depth and radius before ablation takes place. In the experiment we measure the radii of the craters ablated by pulses with different energy and numbers delivered from a chirped pulse amplification Ti: sapphire system. The threshold fluence for both single and multi pulses are obtained. Comparisons are made between results of the experiment and relative simulated calculations show the reliability of our proposed calculation model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号