首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The production of periodic structures in silicon wafers by four-beam is presented. Because laser interference ablation is a single-step and cost-effective process, there is a great technological interest in the fabrication of these structures for their use as antireflection surfaces. Three different laser fluences are used to modify the silicon surface (0.8 J cm−2, 1.3 J cm−2, 2.0 J cm−2) creating bumps in the rim of the irradiated area. Laser induced periodic surface structures (LIPSS), in particular micro and nano-ripples, are also observed. Measurements of the reflectivity show a decrease in the reflectance for the samples processed with a laser fluence of 2.0 J cm−2, probably caused by the appearance of the nano-ripples in the structured area, while bumps start to deteriorate.  相似文献   

2.
Single- and multi-shot ablation thresholds of gold films in the thickness range of 31-1400 nm were determined employing a Ti:sapphire laser delivering pulses of 28 fs duration, 793 nm center wavelength at 1 kHz repetition rate. The gold layers were deposited on BK7 glass by an electron beam evaporation process and characterized by atomic force microscopy and ellipsometry. A linear dependence of the ablation threshold fluence Fth on the layer thickness d was found for d ≤ 180 nm. If a film thickness of about 180 nm was reached, the damage threshold remained constant at its bulk value. For different numbers of pulses per spot (N-on-1), bulk damage thresholds of ∼0.7 J cm−2 (1-on-1), 0.5 J cm−2 (10-on-1), 0.4 J cm−2 (100-on-1), 0.25 J cm−2 (1000-on-1), and 0.2 J cm−2 (10000-on-1) were obtained experimentally indicating an incubation behavior. A characteristic layer thickness of Lc ≈ 180 nm can be defined which is a measure for the heat penetration depth within the electron gas before electron-phonon relaxation occurs. Lc is by more than an order of magnitude larger than the optical absorption length of α−1 ≈ 12 nm at 793 nm wavelength.  相似文献   

3.
Growth characteristics and surface morphology of boron carbide films fabricated by ablating a B4C target in high vacuum with a traditional KrF excimer laser and a high brightness hybrid dye/excimer laser system emitting at the same wavelength while delivering 700 fs pulses are compared. The ultrashort pulse processing is highly effective. Energy densities between 0.25 and 2 J cm−2 result in apparent growth rates ranging from 0.017 to 0.085 nm/pulse. Ablation with nanosecond pulses of one order of magnitude higher energy densities yields smaller growth rates, the figures increase from 0.002 to 0.016 nm/pulse within the 2-14.3 J cm−2 fluence window. 2D thickness maps derived from variable angle spectroscopic ellipsometry reveal that, when ablating with sub-ps pulses, the spot size rather than the energy density determines both the deposition rate and the angular distribution of film material. Pulse shortening leads to significant improvement in surface morphology, as well. While droplets with number densities ranging from 1 × 104 to 7 × 104 mm−2 deteriorate the surface of the films deposited by the KrF excimer laser, sub-ps pulses produce practically droplet-free films. The absence of droplets has also a beneficial effect on the stoichiometry and homogeneity of the films fabricated by ultrashort pulses.  相似文献   

4.
We report measurements of the laser induced breakdown threshold in lithium tantalate with different number of pulses delivered from a chirped pulse amplification Ti: sapphire system. The threshold fluences were determined from the relation between the diameter D2 of the ablated area and the laser fluence F0. The threshold of lithium tantalite under single-shot is found to be 1.84 J/cm2, and the avalanche rate was determined to be 1.01 cm2/J by calculation. We found that avalanche dominates the ablation process, while photoionization serves as a free electron provider.  相似文献   

5.
Laser fluence, repetition rate and pulse duration effects on paint ablation   总被引:1,自引:0,他引:1  
The efficiency (mm3/(J pulse)) of laser ablation of paint was investigated with nanosecond pulsed Nd:YAG lasers (λ = 532 nm) as a function of the following laser beam parameters: pulse repetition rate (1-10,000 Hz), laser fluence (0.1-5 J/cm2) and pulse duration (5 ns and 100 ns). In our study, the best ablation efficiency (η ≅ 0.3 mm3/J) was obtained with the highest repetition rate (10 kHz) at the fluence F = 1.5 J/cm2. This ablation efficiency can be associated with heat accumulation at high repetition rate, which leads to the ablation threshold decrease. Despite the low thermal diffusivity and the low optical absorption of the paint (thermal confinement regime), the ablation threshold fluence was found to depend on the pulse duration. At high laser fluence, the ablation efficiency was lower for 5 ns pulse duration than for the one of 100 ns. This difference in efficiency is probably due to a high absorption of the laser beam by the ejected matter or the plasma at high laser intensity. Accumulation of particles at high repetition rate laser ablation and surface shielding was studied by high speed imaging.  相似文献   

6.
Poly(dimethylsiloxane) (PDMS) has been irradiated with a frequency quadrupled Nd:YAG laser and a KrF*-excimer laser at a repetition rate of 1 Hz. The analysis of ablation depth versus pulse number data reveals a pronounced incubation behavior. The thresholds of ablation (266 nm: 210 mJ cm−2, 248 nm: 940 mJ cm−2) and the corresponding effective absorption coefficients αeff (266 nm: 48900 cm−1, 248 nm: 32700 cm−1, αlin = 2 cm−1) were determined. The significant differences in the ablation thresholds for both irradiation wavelengths are probably due to the different pulse lengths of both lasers. Since the shorter pulse length yields a lower ablation threshold, the observed incubation can be due to a thermally induced and/or a multi-photon absorption processes of the material or impurities in the polymer.Incubation of polymers is normally related to changes of the chemical structure of the polymer. In the case of PDMS, incubation is associated with local chemical transformations up to several hundred micrometers below the polymer surface. It is possible to study these local chemical transformations by confocal Raman microscopy, because PDMS is transparent in the visible. The domains of transformation consist of carbon and silicon, as indicated by the appearance of the carbon D- and G-bands between 1310 and 1610 cm−1, a band appearing between 502 and 520 cm−1 can be assigned to mono- and/or polycrystalline silicon.The ablation products, which are detected in the surroundings of the ablation crater consist of carbon and amorphous SiOx (x ≈ 1.5) as detected by infrared spectroscopy.  相似文献   

7.
Titanium dioxide nanoparticles in distilled H2O solvent were prepared by laser ablation. The experiments were performed irradiating a Ti target with a second harmonic (532 nm) output of a Nd:YAG laser varying the operative fluence between 1 and 10 J cm−2 and for an ablation time ranging from 10 to 30 min. Electron microscopy measurements have evidenced the predominant presence of nanoparticles with diameter smaller than 10 nm together with agglomerations of 100-200 nm whose content increases with the laser fluence. At low laser fluence the particles’ size distribution shows that more than 85% of the nanoparticles have a size smaller than 5 nm while at mid and high fluences the presence of 5-7 nm nanoparticles is predominant. XPS analysis has revealed the presence of different titanium suboxide phases with the prevalence of Ti-O bonds from TiO2 species. The optical bandgap values, determined by UV-vis absorption measurements, are compatible with the anatase phase.  相似文献   

8.
2 to 2.5 mJ/cm2 when a 0.5 ps pulse is used instead of a 15 ns laser pulse. Measurements on liquid indium show a different behavior. With 15 ns laser pulses the threshold fluence is lowered by a factor of ∼3 from 100 mJ/cm2 for solid indium to 30 mJ/cm2 for liquid indium. In contrast, measurements with 0.5 ps laser pulses do not show any change in the ablation threshold and are independent of the phase of the metal at 2.5 mJ/cm2. This behavior could be explained by thermal diffusion and heat conduction during the laser pulse and demonstrates in an independent way the energy lost into the material when long laser pulses are applied. Time-of-flight measurements to investigate the underlying ablation mechanism show thermal behavior of the ablated indium atoms for both ps and ns ablation and can be fitted to Maxwell-Boltzmann distributions. Received: 2 December 1996/Accepted: 11 December 1996  相似文献   

9.
高勋  宋晓伟  林景全 《中国物理 B》2011,20(2):24210-024210
Thermal characteristics of tightly-contacted copper--gold double-layer thin film target under ablation of femtosecond laser pulses are investigated by using a two-temperature theoretical model. Numerical simulation shows that electron heat flux varies significantly on the boundary of copper--gold film with different maximal electron temperature of 1.15×103 K at 5 ps after ablating laser pulse in gold and copper films, which can reach a balance around 12.6 ps and 8.2 ps for a single and double pulse ablation, respectively, and in the meantime, the lattice temperature difference crossing the gold--copper interface is only about 0.04×103 K at the same time scale. It is also found that electron--lattice heat relaxation time increases linearly with laser fluence in both single and double pulse ablation, and a sudden change of the relaxation time appears after the laser energy density exceeds the ablation threshold.  相似文献   

10.
The ablation process of thin copper films on fused silica by picosecond laser pulses is investigated. The ablation area is characterized using optical and scanning electron microscopy. The single-shot ablation threshold fluence for 40 ps laser pulses at 1053 nm has been determinated toF thres = 172 mJ/cm2. The ablation rate per pulse is measured as a function of intensity in the range of 5 × 109 to 2 × 1011 W/cm2 and changes from 80 to 250 nm with increasing intensity. The experimental ablation rate per pulse is compared to heat-flow calculations based on the two-temperature model for ultrafast laser heating. Possible applications of picosecond laser radiation for microstructuring of different materials are discussed.  相似文献   

11.
Pulsed laser ablation of Ag and Au targets, immersed in double-distilled water is used to synthesize metallic nanoparticles (NPs). The targets are irradiated for 20 min by laser pulses at different wavelengths—the fundamental and the second harmonic (SHG) (λ = 1064 and 532 nm, respectively) of a Nd:YAG laser system. The ablation process is performed at a repetition rate of 10 Hz and with pulse duration of 15 ns. Two boundary values of the laser fluence for each wavelength under the experimental conditions chosen were used—it varied from several J/cm2 to tens of J/cm2. Only as-prepared samples were measured not later than two hours after fabrication. The NPs shape and size distribution were evaluated from transmission electron microscopy (TEM) images. The suspensions obtained were investigated by optical transmission spectroscopy in the near UV and in the visible region in order to get information about these parameters. Spherical shape of the NPs at the low laser fluence and appearance of aggregation and building of nanowires at the SHG and high laser fluence was seen. Dependence of the mean particle size at the SHG on the laser fluence was established. Comments on the results obtained have been also presented.  相似文献   

12.
The dependence of the ablation rate of aluminium on the fluence of nanosecond laser pulses with wavelengths of 532 nm and respectively 1064 nm is investigated in atmospheric air. The fluence of the pulses is varied by changing the diameter of the irradiated area at the target surface, and the wavelength is varied by using the fundamental and the second harmonic of a Q-switched Nd-YAG laser system. The results indicate an approximately logarithmic increase of the ablation rate with the fluence for ablation rates smaller than ∼6 μm/pulse at 532 nm, and 0.3 μm/pulse at 1064 nm wavelength. The significantly smaller ablation rate at 1064 nm is due to the small optical absorptivity, the strong oxidation of the aluminium target, and to the strong attenuation of the pulses into the plasma plume at this wavelength. A jump of the ablation rate is observed at the fluence threshold value, which is ∼50 J/cm2 for the second harmonic, and ∼15 J/cm2 for the fundamental pulses. Further increasing the fluence leads to a steep increase of the ablation rate at both wavelengths, the increase of the ablation rate being approximately exponential in the case of visible pulses. The jump of the ablation rate at the threshold fluence value is due to the transition from a normal vaporization regime to a phase explosion regime, and to the change of the dimensionality of the hydrodynamics of the plasma-plume.   相似文献   

13.
A more noble and biocompatible Ti alloy was achieved at fluence of 140 J cm−2 where the implant indicated a higher degree of hardness (825HV), higher corrosion resistance (−0.21 V) and highest hydrophilicity (i.e. θc = 37°) compared with 70° of the control sample. These values corresponded to 58 and 39 mN m−1 of surface tension respectively. The laser treated samples at 140 J cm−2 showed higher wettability characteristics than mechanically roughened surface. Cell growth and their spreading condition in a specific area were analyzed by SEM and Image J Program software. Clearly, more cells were attached (1.2 × 105) to and spread (488 μm2) over the surface at 140 J cm−2 than in any other condition. Pathologically, the treated samples indicated no sign of infection.  相似文献   

14.
Colloidal solutions of Indium oxide nanoparticles have been produced by means of laser ablation in liquids (LALs) technique by simply irradiating with a second harmonic (532 nm) Nd:YAG laser beam a metallic indium target immersed in distilled water and varying the laser fluence up to 10 J cm−2 and the ablation time up to 120 min. At all the investigated fluences the vaporization process of the indium target is the dominant one. It produces a majority (>80%) of small size (<6 nm) nanoparticles, with a very limited content of larger ones (size between 10 and 20 nm). The amount of particles increases regularly with the ablation time, supporting the scalability of the production technique. The deposited nanoparticles stoichiometry has been verified by both X-ray photoelectron spectroscopy (XPS) and Energy Dispersive X-ray (EDX) analysis. Optical bandgap values of 3.70 eV were determined by UV-vis absorption measurements. All these results confirm the complete oxidation of the ablated material.  相似文献   

15.
Conical nanobump arrays were generated on gold thin film processed by interfering femtosecond laser. The transition of the height and diameter as functions of fluence and pulse width was investigated. When the fluence was 87 mJ/cm2, the height and diameter were not so different at 350 fs or shorter pulse width. They decreased at longer pulse width, and no bump could be generated over 1.6 ps. The results suggest the decrease of size is due to the diffusion of electron to not-excited region, and due to heat conduction to not heated region or substrate, or change of absorbance of laser. At long pulse width of 2.4 ps and relatively higher fluence of 190 mJ/cm2, nanobump had liquid-like structure as a stop motion of a water drop.  相似文献   

16.
TiO2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm2. Microcracks at medium laser fluence of 1000 mJ/cm2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm2. The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO2 film might be used for adjustable filters.  相似文献   

17.
The formation of dense arrays of nanospikes occurs under laser ablation of bulk targets (Ag, Au, Ta, Ti) immersed in liquids such as water or ethanol. The average height of spikes is 50 nm and their density on the target amounts to 1010 cm−2. The effect is observed with sufficiently short laser pulses. In particular, either a 350 ps or a 90 ps Nd:YAG lasers are used in their fundamental harmonics. The nanospikes are characterized by UV-Visible reflection spectrometry and atomic force microscopy. The oscillations of electrons within nanospikes result in a permanent coloration of the surface and a modification of the optical reflection spectra of the metal. Scanning the laser beam along the metal surface allows its nanostructuring over extended areas (∼1 cm2). The nanostructured Ag surface shows enhanced Raman scattering of acridine molecules at a concentration of 10−5 M/l, whereas the initial Ag targets do not show any signal within the accuracy of measurements.  相似文献   

18.
The selective ablation of thin (∼100 nm) SiO2 layers from silicon wafers has been investigated by applying ultra-short laser pulses at a wavelength of 800 nm with pulse durations in the range from 50 to 2000 fs. We found a strong, monotonic decrease of the laser fluence needed for complete ablation of the dielectric layer with decreasing pulse duration. The threshold fluence for 100% ablation probability decreased from 750 mJ/cm2 at 2 ps to 480 mJ/cm2 at 50 fs. Significant corruption of the opened Si surface has been observed above ∼1200 mJ/cm2, independent of pulse duration. By a detailed analysis of the experimental series the values for melting and breaking thresholds are obtained; the physical mechanisms responsible for the significant dependence on the laser pulse duration are discussed.  相似文献   

19.
Simultaneous self-Q-switched and mode-locked have been demonstrated in a diode-pumped Nd,Cr:YAG laser. For the first time as we know, almost 100% modulation depth has been achieved at an intracavity intensity of 5.6 × 105 W/cm2. The maximum average output power of 6.52 W corresponding to a slope efficiency of 30% is obtained at 1064 nm. The laser produces high-quality pulses in a TEM00-mode at the pump power of 16.5 W. The pulse duration of the mode-locked pulses is about 600 ps with 136 MHz repetition rate.  相似文献   

20.
Creation of laser-induced morphology features, particularly laser-induced periodic surface structures (LIPSS), by a 532 nm picosecond Nd:YAG laser on crystalline silicon is reported. The LIPSS, often termed ripples, were produced at average laser irradiation fluences of 0.7, 1.6, and 7.9 J cm−2. Two types of ripples were registered: micro-ripples (at micrometer scale) in the form of straight parallel lines extending over the entire irradiated spot, and nano-ripples (at nanometer scale), apparently concentric, registered only at the rim of the spot, with the periodicity dependent on laser fluence. There are indications that the parallel ripples are a consequence of the partial periodicity contained in the diffraction modulated laser beam, and the nano-ripples are very likely frozen capillary waves. The damage threshold fluence was estimated at 0.6 J cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号