首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
本文运用分步傅里叶变换,对满足高阶耦合非线性薛定谔方程的超短艾里脉冲与超短高斯脉冲,利用MATLAB数值模拟了在高阶效应下两脉冲相互作用后的演化过程以及时域上的强度变化.获得了负三阶色散效应使超短脉冲相互作用能传输更远距离;正三阶色散效应会减慢超短脉冲相互作用的传输.自陡峭效应通过孤子分裂现象的形式使超短脉冲相互作用产生时域位移.内拉曼效应可以将超短脉冲相互作用的能量由前沿处转移到后沿处.  相似文献   

2.
本文运用分步傅里叶变换,对满足高阶耦合非线性薛定谔方程的超短艾里脉冲与超短高斯脉冲,利用MATLAB数值模拟了在高阶效应下两脉冲相互作用后的演化过程以及时域上的强度变化。结果表明:负三阶色散效应使超短脉冲相互作用能传输更远距离;正三阶色散效应会减慢超短脉冲相互作用的传输。自陡峭效应通过孤子分裂现象的形式使超短脉冲相互作用产生时域位移,内拉曼效应可以将超短脉冲相互作用的能量由前沿处转移到后沿处。  相似文献   

3.
运用分步傅里叶变换法对适用于超短艾里脉冲的高阶耦合非线性薛定谔方程进行了求解,利用Matlab软件对超短艾里脉冲在单模光纤中传输时相互作用的演化过程进行了数值模拟。结果表明,负三阶色散效应可加快波包的渗透速度,超短脉冲可传输更远距离;正三阶色散效应可减慢超短脉冲的传输,当三阶色散系数足够大时脉冲前沿处的振荡转移到后沿处。自陡峭效应通过孤子分裂的形式使超短脉冲产生时域位移,内拉曼效应导致脉冲在波长较长一侧产生拉曼自频移,且超短脉冲的能量由前沿处转移到后沿处。自陡峭效应和内拉曼效应的共同作用导致超短脉冲产生时域位移且脉冲前沿处的能量会转移到后沿处。三阶色散效应、自陡峭效应、内拉曼效应三者同时存在时会显著影响超短艾里脉冲相互作用的自弯曲特性和自加速特性。  相似文献   

4.
单模光纤中三阶色散对超短光脉冲传输的影响   总被引:4,自引:0,他引:4  
刘群  励强华  牟艳秋 《光学技术》2006,32(1):148-150
基于超短光脉冲在单模光纤中传输时高阶非线性效应的影响。应用非线性薛定谔方程(HONLS)理论,考虑光纤色散三阶效应,推导出无啁啾的高斯脉冲沿光纤传输时脉冲变化的表达式,并对理论结果进行了数值模拟与分析。结果表明,三阶色散会引起光脉冲形状发生畸变,会在其前沿或后沿附近形成非对称的振荡结构。  相似文献   

5.
研究了强双折射光纤中沿偏振主轴入射的超短光脉冲压缩效应。当考虑三阶色散效应时,三阶色散与光纤非线相互作用能增强一偏振光脉冲的压缩而抑制另一偏振光脉冲的压缩。正三阶和的强慢孤子压缩,负三阶色散增强快孤子压缩,三阶色散参量越大,脉冲压缩效果越明显。  相似文献   

6.
卓辉  文双春 《光学学报》2007,27(8):1475-1480
将超常介质的色散磁导率合并到非线性极化项中,借鉴常规介质中超短脉冲传输方程的推导方法,得到了非线性超常介质中超短脉冲的传输方程。在德鲁德(Drude)色散模型下,根据脉冲中心频率的不同在传输方程中出现了可正、可负、可为零的自陡峭系数,以及高阶非线性色散项。此外,利用矩方法对传输方程进行分析,得到了超常介质中超短脉冲传输方程的能量守恒定律表达式,揭示了色散磁导率导致的超短脉冲传输的新特性,发现二阶非线性色散使超短脉冲的能量、脉冲频移、脉冲宽度、中心位置和啁啾都随传输距离呈现振荡式变化。  相似文献   

7.
光纤中基于互相位调制效应的超短光脉冲对的产生   总被引:5,自引:4,他引:1  
提出一种在单模光纤正常色散区由连续波产生超短光脉冲对的新方法.即让连续波和一个波长位于光纤负色散区的高阶孤子在光纤中同时传输,互相位调制效应和群速度色散效应的互相作用能使连续波演化成超短光脉冲对.本文还通过计算机模拟,对该方法进行了全面的考察和分析.结果表明,此方法实用且效果较好.  相似文献   

8.
为了使得数值模拟更为精确,采用广义非线性薛定谔方程(GNSE)描述超短激光脉冲在光子晶体光纤中的传输演化过程,并利用二阶分步傅里叶方法通过求解方程,数值计算了相同脉宽和能量的超短脉冲在不同色散参量的光子晶体光纤中非线性传输和超连续谱的产生。比较了超短脉冲在光纤不同色散区传输时,高阶色散和非线性效应对超连续谱的产生以及对脉冲波形演化的影响。结果表明,相对于超短脉冲中心波长位于光子晶体光纤的正常和反常色散区,可以相应获得短波波段和长波波段的超连续谱输出,当超短脉冲中心波长位于零色散波长点时,通过色散和非线性效应的联合作用,更易于产生全波长段的平坦超连续谱。  相似文献   

9.
曹文华  王勇  刘颂豪 《光学学报》2012,32(9):906005
采用光学相位共轭补偿光纤通信系统的色散及非线性必须满足一个前提条件,即相位共轭器两边线路上的色散和非线性分布(或传输功率分布)必须严格对称,这在现有的一般传输线路(标准单模光纤加集总掺铒光纤放大器)难以实现。提出了预啁啾结合中距相位共轭的补偿方案,并进行了数值计算。结果表明,通过在发送端对输入脉冲进行预啁啾展宽,可有效地减轻非线性效应与色散的相互作用,获得理想的补偿效果;对于皮秒超短光脉冲传输,脉冲内拉曼散射相对于三阶色散对补偿结果的影响很小,因此,频域相位共轭相对于时域相位共轭具有更好的综合补偿性能。该方案简单易行,无需对已敷设好的线路作较大改动。  相似文献   

10.
光纤中基于交叉相位调制的超短光脉冲串的产生   总被引:4,自引:1,他引:3  
曹文华  刘颂豪 《光学学报》1997,17(7):30-836
提出一种在单模光纤正常色散区由连续波产生超短光脉冲串的新方法,即让连续波和一个波长位于光纤正常色散区的调制脉冲串在光纤中同时传输,交叉相位调制效应和群速度色散效应的相互作用能使连续波演化成一串超短光脉冲,其脉冲宽度比调制脉冲串中的脉宽要小得多,本文还通过计算机模拟,对这一方法进行了全面的考察和分析。结果表明,该方法不仅实用,而且可取得较好的效果。  相似文献   

11.
对不同条件下强激光在空气中形成等离子体通道的三次谐波光谱特性进行了研究。单脉冲能量12 mJ,脉宽30 fs,重复频率10 Hz,中心波长795 nm的飞秒激光脉冲经0.5 m焦距的凹面镜聚焦,在空气中形成了等离子体通道, 并在前 向观测到谱线半峰全宽(FWHM)为15 nm的三次谐波。随着脉冲啁啾的变化,三次谐波的光谱出现红移或兰移,当激光脉冲附带+1.3×105fs2的二阶色散时,三次谐波谱线红移且谱峰强度增长了两倍。同时 ,通过改变可编程声光色散滤波器(AOPDF)光谱调制的位置(Hole position),三次谐波的光谱也发生频移。  相似文献   

12.
In this article we propose a theoretical treatment of noncollinear phase-matched femtosecond parametric interaction process pumped by ultrashort optical pulses, and investigated the pulse characteristics of OPG in BBO crystal. The results show that the major factors, which affect the optical parametric conversion coefficient and durations of the pulses, are the group velocity mismatch and the phase mismatch among the three ultra-short pulses. In addition, the material dispersion can cause the durations of the pulses to increase when pump pulse is below 20 fs, and its influence becomes more obvious at low pump intensity.  相似文献   

13.
 为了提高超短脉冲二倍频的转换效率和改善出射倍频光的脉冲形状,对超短脉冲倍频中三阶非线性效应的影响进行了理论分析和数值模拟,并采用初始相位失配的方法来补偿三阶非线性效应的影响。结果表明:用KDP晶体二倍频中心波长为800 nm的超短脉冲,当入射功率密度大于100 GW/cm2时,三阶非线性效应是倍频转换效率的主要影响因素。对脉宽为50 fs,入射功率密度为250 GW/cm2的超短脉冲在KDP晶体(2 mm)中的二次谐波变换,当初始相位失谐0.9 mrad时,转换效率提高了10%,同时由三阶非线性效应引起的强度调制得到明显抑制,出射基频光和倍频光的脉冲形状得到明显改善。  相似文献   

14.
基于高阶色散管理和相位共轭技术的色散补偿   总被引:2,自引:1,他引:1  
步扬  王向朝 《光学学报》2004,24(11):525-1529
相位共轭技术能够同时且高效地补偿二阶色散及非线性效应,且该技术同信号比特率、调制方式无关,是最有前景的色散补偿技术之一。理论分析了在高阶色散作用下,超短高斯脉冲信号在中距相位共轭通信系统中的传输演化特性,数值模拟了在二阶、三阶和四阶色散作用下,飞秒高斯脉冲信号在基于中距相位共轭技术的光纤色散管理链中的动态传输过程。结果表明,相位共轭技术和高阶色散管理相结合,不仅可以补偿和复原包括奇数阶和偶数阶色散在内的全部色散和非线性所引入的信号失真和畸变,而且能够减弱时分复用系统中脉冲之间的相互作用,使得信号在传输一个周期后恢复波形,从而提高了相位共轭系统对失真信号的补偿性能。  相似文献   

15.
负折射介质中三阶非线性色散项对超短脉冲传输的影响   总被引:1,自引:1,他引:0  
采用分步傅里叶法研究了三阶非线性色散项对超短脉冲传输的影响.通过模拟数值计算得出,在德鲁德模型频率选取的一定范围内,三阶非线性色散项对超短脉冲传输所造成的影响是不可忽略的.结果表明:三阶非线性色散项系数取负值时,在正常色散区超短脉冲不对称展宽,脉冲中心向前沿偏移;在零色散点超短脉冲不对称展宽程度加剧并在脉冲前沿形成振荡,脉冲中心向前沿偏移;在反常色散区超短脉冲不对称变窄,脉冲中心仍向前沿偏移.  相似文献   

16.
The optical wave breaking (OWB) characteristics in terms of the pulse shape, spectrum, and frequency chirp, in the normal dispersion regime of an optical fiber with both the third-order dispersion (TOD) and quintic nonlinearity (QN) are numerically calculated. The results show that the TOD causes the asymmetry of the temporal- and spectral-domain, and the chirp characteristics. The OWB generally appears near the pulse center and at the trailing edge of the pulse, instead of at the two edges of the pulse symmetrically in the case of no TOD. With the increase of distance, the relation of OWB to the TOD near the pulse center increases quickly, leading to the generation of ultra-short pulse trains, while the OWB resulting from the case of no TOD at the trailing edge of the pulse disappears gradually. In addition, the positive (negative) QN enhances (weakens) the chirp amount and the fine structures, thereby inducing the OWB phenomena to appear earlier (later). Thus, the TOD and the positive (negative) QN are beneficial (detrimental) to the OWB and the generation of ultra-short pulse trains.  相似文献   

17.
We propose a method of measuring the fine structure of a long pulse in time domain by a synchronized ultrashort pulse, in which the basic principle is the cross-correlation interaction between the long pulse and the ultrashort pulse in a nonlinear crystal. After a theoretical analysis on the principle and resolution, as an example, the fine structure of a picosecond Nd:YLF laser pulse is characterized by a synchronized femtosecond pulse experimentally. Further, the effect of group velocity mismatch on measurement results is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号