首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, experimental and numerical investigations of the hydrodynamics and heat transfer in a disk slot heat exchanger-reactor for a radial flow of a gas mixture reacting on the channel walls are described. Data for the coefficients of heat transfer from the wall being heated to the gas flowing inside the reactor are presented. The temperature field of a catalytically active reactor plate at heat release on it has been investigated experimentally. Calculations of the flow and heat transfer in a slot reactor element for a catalytic reaction with heat release have been performed. Partial oxidation of methane in an oxygen medium with the formation of a hydrogen-containing synthesis gas in a two-dimensional microchannel has been investigated numerically. Data for the extent of the chemical conversion of methane versus the initial mixture consumption and reaction temperature are presented.  相似文献   

2.
Improvement of the heat transfer of the cold side is one of the approaches to enhance the performance of TEG systems.As a new type of heat transfer media, nanofluids can enhance the heat transfer performance of working liquid significantly.Based on a three-dimensional and steady-state numerical model,the heat transfer and thermoelectric conversion properties of TEG systems were studied. Graphene anoplatelet aqueous nanofluids were used as the coolants for the cold side of the TEG system to improve the heat transfer capacity of the cold side. The results showed that the heat absorbed by the hot side, voltage, output power, and conversion efficiency of the TEG system were increased greatly by the nanofluid coolants.The output power and the conversion efficiency using 0.1-wt% graphene nanoplatelet aqueous nanofluid as the coolant are enhanced by 26.39% and 14.74%, respectively.  相似文献   

3.
The thermal-diffusive model was applied to the problem of flame propagation in a microchannel with controlled temperature distribution in the walls; this demonstrated the possibility of formation of oscillating or rotating spatial flame structures, which were described previously in experimental works on microcombustion. Two cases were considered: combustion in a rectangular channel and in the clearance between two disks with radial feeding of premixture. In both cases, the typical across size of the channel was lower than the critical diameter determined with respect to the ambient temperature. The gas flow was assigned and described by the Poiseuille-flow velocity profile. Formation of oscillating flame in a rectangular channel and rotating patterns in a radial channel was observed for a certain range of gas flow rate. At low flow rates beyond this range, repetitive ignition/extinction of flame took place; at high flow rate we observed a steady flame mode. Formation of these special flame structures is related to heat transfer between gas and hot walls of the channel, as well as to velocity maldistribution in the microchannel.  相似文献   

4.
半导体温差发电过程的模型分析与数值仿真   总被引:5,自引:0,他引:5       下载免费PDF全文
王长宏  林涛  曾志环 《物理学报》2014,63(19):197201-197201
本文提出一种新型的半导体温差发电模型,在温差发电过程的数值模拟中考虑了热电单元之间封闭腔体内空气传热的影响.同时进一步运用有限元的数值计算方法对不同电臂对数和不同型号温差发电模型的温度场、电压场进行了数值仿真计算,并对仿真结果进行分析.结果表明:采用127对热电单元模型计算的能量转换效率随冷热端温差增大而迅速提高,与采用1对热电单元模型计算的能量转换效率之差从冷热端温差为20℃的0.39%提高到冷热端温差为220℃时的5.16%,能量转换效率比1对热电单元平均高出3.02%.冷端温度恒定在30℃时,温差发电芯片的输出电压、功率以及能量转换效率均随着电偶臂的横截面积的增大而提高,且电偶臂冷热两端的温差越大提高幅度也越大,而温差发电芯片内阻则与电偶臂横截面积成反比关系,当温差为220℃时对应的输出功率最高达28.9 W.  相似文献   

5.
本文建立了热电发电系统(TEG)多物理场数值模型,并充分考虑换热器流体影响,综合研究了具有不同热侧换热器翅片结构的TEG系统性能。在雷诺数为1000~10000范围内,分析了流体沿程温度分布特征、泵功及热电发电模块的能量转换特性.所研究的三种翅片结构包括:全流道等高度直翅片(Fin-1)、下游强化梯度翅片(Fin-2)以及上游强化梯度翅片(Fin-3).研究表明,通道长高比及热电材料覆盖率一定,热电发电功率及转换效率随流量呈二次曲线变化关系,存在最匹配流量使得系统发电性能最佳。等高度直翅片对流量的变化敏感,随流量增大,则压损增大,导致系统净输出功率及发电效率无收益.而梯度翅片可以在更大范围内产生正收益;下游强化梯度翅片具有最佳的流体沿程温度均匀性,但沿程局部热阻却最大.综合考虑沿程局部热阻分布及泵功消耗,上游强化梯度翅片TEG系统净转换效率最高,因此局部热阻分布及泵功综合因素应为TEG内的换热器合理设计的关键。  相似文献   

6.
The basis of the proposed converter is a thermoelectric capacitor, which is the system of a metal-dielectric-semiconductor-metal. In such a system, non-zero conversion of the environmental heat into electrical energy without preliminarily creating a temperature gradient is possible. Charging of the thermoelectric capacitor takes place through the bottom electrode of the semiconductor substrate and discharging takes place through the near-surface layer enriched electrons formed during charging in the near-surface layer on the boundary with the dielectric. In this case, the amount of absorbed heat at the capacitor charging in the contact of the metal-semiconductor is greater than being allocated heat at the discharge. This is due to the fact that the contact difference between the bottom electrode and semiconductor is more than the contact difference between the metal and near-surface enriched layer in which the concentration of electrons is significantly more than in the volume of a semiconductor. As a result, the absorbed heat, which is not emitted, is converted into electrical energy at the discharge according to the law of conservation of energy.  相似文献   

7.
对低温空气制冷系统中的散热器、回热器性能进行实验研究,测量不同工况条件下两个锯齿形板翅式换热器的换热效率及系统性能,分析了换热器低压侧和高压侧的空气流量对换热器及系统性能的影响。结果表明:(1)散热器低压侧空气流量是影响其效率的主要因素;(2)回热器效率随其低压侧空气流量的增大而增大,随其高压空气流量的增大而减小;(3)高压空气流量是影响制冷量的主要因素;在其它工况参数不变的条件下,高压空气流量增大7.9%,制冷量最大增加14.5%。  相似文献   

8.
甲烷微尺度催化燃烧的数值模拟   总被引:10,自引:1,他引:9  
本文联合使用计算流体力学软件FLUENT和可以计算表面反应的化学反应动力学软件DETCHEM对有逆流换热的微尺度燃烧器进行了数值计算。计算中忽略空间反应。燃料-空气混合物的当量比为0.4,反应器壁面采用等温边界条件。计算结果表明,采用催化燃烧可以实现微尺度下通常情况下无法实现的甲烷稳定燃烧。通过适当设置催化表面,可以实现燃料低温、高效转变。甲烷的总转变率受流动状态、反应温度和催化表面的大小等因素的影响。  相似文献   

9.
A mathematical model to predict the maximum energy conversion efficiency of the thermoelectric generator is developed to improve the performance and maximize the energy conversion efficiency of the thermoelectric power generator. The studied device corresponds to an original configuration of thermoelectric modules mounted on the peripheral surfaces of two channels, one of the channels is crossed by hot fluid and the other by a cold fluid. First, the effect of the flow rate was studied to choose the flow rate adapted to our study for three different configurations of the thermopile, the co-current configuration, the counter-current configuration, and the sandwich configuration. Then a comparison was made to choose the best configuration between these three studied configurations by addressing their thermoelectric performances. The results revealed that the sandwich configuration is much better than the co-current and counter-current configurations and reduces the surface area occupied by the TEG by half while generating more power than a solar panel.  相似文献   

10.
佟为明  王进己  金显吉 《强激光与粒子束》2019,31(4):040004-1-040004-5
为了建立起Buck变换器内部本质安全性能评价的相关判别式,首先以简单电感电路的电弧放电为研究对象,基于热引燃理论,采用持续发热点热源温度场模型,将初始燃烧容积的温度由最高值下降至气体混合物燃烧温度的时间是否大于化学反应的时间作为判断火花能否成功引燃气体混合物的临界条件,得到了相应的火花放电时间临界值的表达式。然后,基于爆炸性试验数据对采用等效电阻法和放电电流线性模型算得的Buck变换器电感开路电弧放电能量表达式进行了修正,进而建立了Buck变换器内部本质安全性能评价的能量判别式和放电时间判别式。验证结果表明了所求放电时间临界值的合理性和所建立判别式的正确性。  相似文献   

11.
将稳态平板法测导热系数的实验应用于热电器件热电转换效率的测试,通过测量输入器件的传热速率和负载的输出电功获得热电器件的热电转换效率。研究发现,稳态平板法可以测量工作温度在室温到100℃范围内热电器件的热电转换效率。  相似文献   

12.
We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs – one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an “exotic” power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.  相似文献   

13.
A new thermo-electrochemical effect similar to Peltier heat is introduced in this paper and suggested as a main cause of the excess heat observed in electrolytic cells. If the cell electrodes are made from different materials, we show that the system will function like a thermoelectric heat pump. With finite work input, this thermodynamic engine will pump in an infinite amount of low-grade environmental heat for vanishing temperature differences between the hot and cold source in the reversible, low current density, limit. A partial irreproducibility of excess heat observations is expected due to differences in the location of the calorimeter wall in each experiment. The heat pump nature and the thermoelectric properties of electrolytic cells are basic new notions introduced here. They may solve the excess heat paradox in electrolytic cold fusion, thus removing the well-known discrepancy between the small output of nuclear reaction products and the large excess heat, redefining this way both the notion of excess heat and the focus of our cold fusion research.  相似文献   

14.
Low-quality heat is generally discarded for economic reasons; a low-cost energy conversion device considering price per watt, $/W, is required to recover this waste heat. Thin-film based thermoelectric devices could be a superior alternative for this purpose, based on their low material consumption; however, power generated in conventional thermoelectric device architecture is negligible due to the small temperature drop across the thin film. To overcome this challenge, we propose new device architecture, and demonstrate approximately 60 Kelvin temperature differences using a thick polymer nanocomposite. The temperature differences were achieved by separating the thermal path from the electrical path; whereas in conventional device architecture, both electrical charges and thermal energy share same path. We also applied this device to harvest body heat and confirmed its usability as an energy conversion device for recovering low-quality heat.  相似文献   

15.
Steam reforming of methanol into a hydrogen-containing gas under activated methanol conversion on annular microchannel walls was experimentally investigated. The methanol conversion was carried out on a copper-zinc catalyst deposited on the channel internal wall. The concentrations of the chemical conversion products in the output gas mixture were determined at different reactor temperatures and residence times. The channel wall temperature range within which the methanol steam reforming is intensified was also determined. It was shown that the CO content in the reaction products is determined by the CO2 partial pressure rather than by the reactor temperature. A kinetic model of methanol steam reforming on a copper-zinc catalyst was developed.  相似文献   

16.
The dynamics of flames propagating in straight channels filled with a stationary low-Lewis-number premixed gas mixture is studied numerically. A method for determining the propagation velocity of a sporadic combustion wave consisted of separate flame spots is proposed. Dependencies of the sporadic combustion wave propagation velocity, the residual fuel concentration and the number of flame spots on the channel size and the value of radiation heat losses are obtained. Analysis of numerical results show that for the channels of diameter exceeding some value the number of separate cup-like fragments constituting sporadic combustion wave is proportional to the channel cross-sectional area. At smaller diameters, the number of flame spots changes insignificantly and is one or two. It is shown that one of the universal characteristics of the sporadic combustion wave depending only on mixture properties but independent on system geometry is the area necessary to accommodate one reacting spot. Flame velocity which is another fundamental combustion characteristic is found to be almost independent on channel size starting from some critical diameter. This diameter, however, depends on mixture properties or radiative heat loss intensity and corresponds to the sporadic flame containing from several to ten reacting spots. Thus, the main properties of sporadic combustion waves in wide channels can be determined by numerical modeling of the flame propagation in the relatively narrow channels in which the flame consists of 1–10 cup-like fragments.  相似文献   

17.
We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs – one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an “exotic” power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.  相似文献   

18.
采用飞秒激光等离子体丝(飞秒光丝)在金属铝箔表面以不同飞秒光丝扫描速度(5,15,25,35和45 mm·s-1)制备了微纳结构表面,并在太阳光能量主要覆盖的光谱范围(330~890 nm)内对其进行了反射率测量,发现飞秒光丝制备的微纳结构表面具有显著的高光谱吸收特性,并且飞秒光丝扫描速度越慢,光谱吸收率越强,5 mm·s-1条件下微纳结构表面光谱吸收率达97%以上。将制备的高光谱吸收微纳结构表面作为温差发电片(TEG)光吸收体,以此为基础构建了考虑太阳光辐照及温差发电模块(即TEG模块:结合微纳结构表面的TEG)散热情况的仿真实验环境并进行发电功率测量。研究结果表明,具有微纳结构的铝表面(5 mm·s-1制备条件下)与抛光铝箔或裸发电片相比,光电转化效率(发电效率)可分别提高43.3和10.7倍。进一步研究了TEG模块的温差发电的过程与机理,将TEG模块的温差发电过程分为光热(光能转化为热能)与热电(热能转化为电能)两个转化过程分析:首先在光热转化过程中,微纳结构表面增强了太阳光吸收效率,为光热转化提供更多的光子能量,实现了其在表面更多的热量沉积,进而在之后的热电转化过程中,更多的热能沉积使得TEG模块的载流子迁移率得到了很大提升,这样在同样的温差(发电片冷热端的温度差值)条件下,微纳结构表面与普通表面相比可以获得更高的热电转化效率。因此,微纳结构表面的高光谱吸收性能使得TEG模块经光热转化后得到的高热能沉积使载流子迁移率得到了提高,进而显著提升了TEG模块发电性能,这是微纳结构表面增强TEG温差发电效率的主要原因。这一机理的揭示,为TEG模块发电性能的进一步优化和提升提供了理论依据,对TEG模块的实际应用具有重要的意义。  相似文献   

19.
Catalytic methane steam reforming in a slot microchannel under external heat supply to the mixture reacting on walls is considered based on numerical simulation of a complete system of Navier-Stokes equations. Three ways of heat supply to channel walls are represented, namely, a uniform heat flux, a heat flux linearly decreasing in channel length, and a heat flux following the reaction rate profile of the main reaction. The thermophysical parameters of the mixture depend on its temperature and composition. Two diffusion models are considered, namely, models with equal and different diffusion coefficients for each mixture component. It is shown that consideration of multicomponent diffusion does not practically affect the concentration of the components and the methane reforming at the outlet. For the above-mentioned ways of heat supply, the methane reforming with a heat flux linearly decreasing in channel length is most significant.  相似文献   

20.
A converter of focused optical radiation into electric current is considered on the basis of the photovoltaic effect in plasmas. The converter model is based on analysis of asymmetric spatial distributions of charge particle number density and ambipolar potential in the photoplasma produced by external optical radiation focused in a heat pipe filled with a mixture of alkali vapor and a heavy inert gas. Energy balance in the plasma photoelectric converter is analyzed. The conditions in which the external radiation energy is effectively absorbed in the converter are indicated. The plasma parameters for which the energy of absorbed optical radiation is mainly spent on sustaining the ambipolar field in the plasma are determined. It is shown that the plasma photoelectric converter makes it possible to attain a high conversion efficiency for focused solar radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号