首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
利用原子转移自由基聚合(ATRP)法对合成的新单体邻甲基丙烯酰胺基苯甲酸(o-MAABA)进行聚合,通过核磁验证得到符合预先设计的、结构明确的聚合物,聚合物分子量为7900;将纳米ZnO引入到该聚合物P(o-MAABA)中,得到聚合物/纳米ZnO粒子复合物.用红外光谱和差热分析方法对聚合物和复合物进行了表征,并采用透射电镜(TEM)观察了复合物粒子的形貌.红外光谱表明纳米ZnO确实被引入到聚合物链中,并且与聚合物中的某些官能团发生了一定的相互作用;差热分析表明P(o-MAABA)/纳米ZnO复合物的热稳定性较原来聚合物P(o-MAABA)有所提高;TEM观察表明复合物粒子基本为球状,表面较为光滑.P(o-MAABA)/纳米ZnO复合物表现出特殊的荧光性能,与聚合物相比荧光光谱发生红移,并且复合物溶解性较好,能成膜,可望在发光材料方面得到应用.  相似文献   

2.
利用溶胶凝胶法制备了ZnO纳米粒子,用紫外光照射对其进行表面处理。探讨了表面处理对ZnO纳米粒子晶体结构与光学性质的影响。结果显示:在晶体结构方面,紫外光照射会降低ZnO纳米粒子的团聚现象,缩短晶格常数,使其所受应力由压缩应力释放变为伸张应力,增大表面能,为使能量最佳化并稳定而导致ZnO纳米粒子形成再构。在光学性质方面,紫外光照射会使ZnO纳米粒子表面产生较多的氧空位,而氧空位又会使其表面容易吸附羟基,使得ZnO纳米粒子变得更加亲水。  相似文献   

3.
利用溶胶凝胶法制备了ZnO纳米粒子,用紫外光照射对其进行表面处理.探讨了表面处理对ZnO纳米粒子晶体结构与光学性质的影响.结果显示:在晶体结构方面,紫外光照射会降低ZnO纳米粒子的团聚现象,缩短晶格常数,使其所受应力由压缩应力释放变为伸张应力,增大表面能,使能量最佳化并稳定而导致ZnO纳米粒子形成再构.在光学性质方面,紫外光照射会使ZnO纳米粒子表面产生较多的氧空位,而氧空位又会使其表面容易吸附羟基,使得ZnO纳米粒子变得更加亲水.  相似文献   

4.
乔梅英  谷永庆 《光谱实验室》2012,29(2):1238-1240
采用溶胶-凝胶法制备ZnO纳米粒子,采用X-射线衍射仪(XRD)、透射电镜(TEM)等手段对样品进行了表征;以纳米氧化锌作为光催化剂,利用300W高压汞灯为光源对甲基橙溶液进行光催化实验。实验结果表明:以汞灯为光源,纳米ZnO为催化剂对甲基橙溶液进行光催化时,纳米ZnO的最佳投加量为0.1020g。  相似文献   

5.
氧化锌纳米晶体的光谱分析   总被引:7,自引:5,他引:2  
采用沉淀法并通过控制前驱体的煅烧温度来制备粒径不同的氧化锌(ZnO)纳米晶体,对粒子的透射电镜照片进行分析,结果表明,制备出的纳米粒子分散性好、形貌一致、粒径分布集中。样品的X射线衍射光谱分析表明,随着前驱体煅烧温度增加,晶体粒径增大、结晶度提高;样品的紫外-可见吸收光谱的峰位随粒径减小而发生蓝移,这一实验结果表明ZnO纳米晶体呈现出较明显的量子限域效应;红外吸收光谱测量结果表明,用沉淀法制备的ZnO纳米晶体的表面会吸附一小部分残余的离子,对红外吸收光谱中的ZnO特征振动峰随粒径减小发生宽化和红移的现象进行了理论分析;光致发光光谱测量结果表明,ZnO纳米晶体在紫外区(360 nm)存在一较弱的发光峰,而在可见区(468 nm)存在一较强的发光峰,与理论计算结果进行比较后,认为锌空位点缺陷是导致ZnO纳米晶体可见区发光的主要原因。  相似文献   

6.
用甲基丙烯酸甲酯 (MMA)作油相 ,反相胶束微乳液作为模板 ,制备了纳米氯化银 (AgCl)粒子 ,再进行原位聚合制备了纳米氯化银 /聚甲基丙烯酸甲酯 (AgCl/PMMA)复合材料 .透射电镜 (TEM )分析表明 ,纳米AgCl的尺寸为 2 0~ 80nm .扫描电镜 (SEM )测试表明纳米AgCl粒子均匀地存在于PMMA基材中 .红外分析证明 ,胶束中水和表面活性剂AOT的羰基在MMA聚合后微观环境发生变化 ,纳米粒子同聚合物之间有吸附行为 .动态力学 (DMTA)分析复合材料 ,发现纳米AgCl粒子与聚合物之间存在强烈相互作用 ,形成了中间相层 (interphaselayer) ,改变了聚合物的动态力学性能 .  相似文献   

7.
采用ZnO纳米晶表面还原Ag+的方法合成了ZnO/Ag纳米复合物,并研究了其光学性质.透射电镜和XRD谱表征了ZnO/Ag纳米复合物的晶体形貌和结构,吸收光谱和荧光光谱证明ZnO和Ag之间存在电子传递.在325 nm激光激发下观察到了ZnO/Ag纳米复合物的表面增强共振拉曼散射.  相似文献   

8.
纳米粒子构建表面的超疏水性能实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
采用疏水纳米粉体压片法和岩心吸附法构建了具有微纳米结构的表面,测试了这些表面的接触角,拍摄了水滴在吸附纳米粒子的岩石表面的滚动过程照片,采用扫描电子显微镜(scanning electron microscope,SEM)检测了表面的微结构.实验结果表明:无机纳米粒子经弱疏水性材料修饰后,其表面润湿性由强亲水变为强疏水;疏水纳米粒子吸附表面的接触角均大于120°,滚动角约7°,显示出超疏水特性;SEM照片显示,这些超疏水表面是具有不规则微纳米结构的气固复合面,符合Cassie-Baxter的复合表面模型. 关键词: 超疏水 纳米粒子 微纳米结构表面 接触角  相似文献   

9.
通过种子乳液聚合合成核壳结构的聚甲基丙烯酸甲酯/聚苯乙烯(PMMA/PS)复合微球,通过酸碱溶胀法进一步制备出次微米级的PS中空微球. 将此中空微球作为微反应器,使在ZnO纳米粒子前驱体溶液中溶胀, 最终ZnO纳米粒子在PS中空微球中原位生成. 实验表明, 组成ZnO纳米粒子前驱体溶液的两种组 分(CH3COO)2Zn和LiOH的滴加顺序不同对最终生成的ZnO纳米粒子的尺寸和负载效率有很大的影响,但并不改变ZnO纳米粒子的晶型. 复合物的光致发光和UV-Vis吸  相似文献   

10.
以经过硅烷化后玻璃片为基底,之后吸附金纳米种子,采用柠檬酸钠为还原剂,在荧光灯照射条件下还原硝酸银,制备出基底表面具有银纳米粒子聚集结构的材料。采用透射电镜、扫描电镜和紫外可见分光光度计对产物的形貌和性质进行了表征,并考察银纳米粒子的形貌对其薄膜基底SERS活性的影响。结果表明:随着光照时间增加至16 h,金种子长大为平均粒径110 nm的不规则状多晶银纳米粒子,且出现双层粒子堆积。基底上纳米粒子的吸收光谱上出现了由银粒子的表面等离子体激元偶极子耦合引发的强烈吸收峰:随着光照时间的变化,耦合峰在600~813 nm波段内移动。光照时间为12 h后得到的SERS活性基底具有最强的SERS信号。  相似文献   

11.
The poly(poly(ethylene glycol) methyl ether monomethacrylate) (PPEGMA) grafted zinc oxide (ZnO) nanoparticles were successfully prepared via the surface-initiated atom transfer radical polymerizations (ATRP) from the surfaces functionalized ZnO nanoparticles. The 2-bromoisobutyrate (BIB) was immobilized onto the surface of the ZnO nanoparticles through the reaction between 2-bromoisobutyryl bromide (BIBB) and the hydroxyl groups on nanoparticles, serving as the initiator to induce the ATRP of poly(ethylene glycol) monomethacrylate (PEGMA). Well-defined polymer chains were grown from the surfaces to yield hybrid nanoparticles comprised of ZnO cores and PPEGMA polymer shells having multifunctional end groups. The structure and morphology of the nanoparticles were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The optical properties of the nanoparticles were investigated by UV-vis absorption spectroscopy and photoluminescence spectroscopy (PL). The results showed that the dispersion and near-band edge (NBE) emission of ZnO nanoparticles could be improved by the grafted PPEGMA polymer segments.  相似文献   

12.
The heterogeneous assembly of colloidal polymer particles on the nano‐ and microstructures of a metal is a versatile platform for adjusting the mechanical and electrical properties simultaneously. The assemblies of silver (Ag) microrods and flower‐like zinc oxide (ZnO) microparticles with poly(methyl methacrylate) (PMMA) nanospheres are presented to prepare advanced composite materials. PMMA nanoparticles are prepared via the emulsion polymerization technique using a microfluidic preparation step in the presence of cationic surfactant. The surface charge of PMMA particles determines the binding interaction strength with inorganic constituents. Ag microrods and ZnO microparticles are prepared in a batch and in a continuous flow process, respectively. The assembling process can be explained by a particle–particle binding process due to the electrostatic interaction for both types of nanoassemblies. The observed binding pattern reveals certain lateral mobility of the small polymer particles at the surface of larger metal particle. The particle ratios in the nanoassemblies can be tuned over a wide range by changing the reaction parameters.  相似文献   

13.
Blending of polymeric materials is an effective way to obtain materials with specific properties, since the properties of these multiphase polymeric materials are not only affected by the properties of the component polymers but also by the morphology formed. The research described here was focused on investigation of the morphology of polymer blends of poly lactic acid (PLA) and poly methyl methacrylate (PMMA) and the PLA/PMMA blends containing various amounts of graphene nano plates, (GNP). In this work, the blends were prepared by solution casting and the morphologies of these nano filled polymer blends were studied. By adding graphene nano plates into the PLA/PMMA blends, the morphology changed for all compositions. It was very interesting to note that the GNP were found to be preferentially located in one of the polymer phases, different for the different loadings, and its location determined the final morphology of the PLA/PMMA blends. The morphology of the blends was observed by SEM and the composition-morphology dependence responses were investigated using a Fourier transform infra-red (FTIR) spectroscopy technique.  相似文献   

14.
A versatile method was developed for the chain-end functionalization of the grafted polymer chains for surface modification of nanoparticles with functionalized groups through a combination of surface-initiated atom-transfer radical polymerization (ATRP) and Huisgen [3 + 2] cycloaddition. First, the surface of SiO2 nanoparticles was modified with poly(methyl methacrylate) (PMMA) brushes via the “grafting from” approach. The terminal bromides of PMMA-grafted SiO2 nanoparticles were then transformed into an azide function by nucleophilic substitution. These azido-terminated PMMA brushes on the nanoparticle surface were reacted with alkyne-terminated functional end group via Huisgen [3 + 2] cycloaddition. FTIR and 1H NMR spectra indicated quantitative transformation of the chain ends of PMMA brushes onto SiO2 nanoparticles into the desired functional group. And, the dispersibility of the end-functional polymer-grafted SiO2 nanoparticles was investigated with a transmission electron microscope (TEM).  相似文献   

15.
This study deals with preparation and evaluation of properties of chitosan/zinc oxide bionanocomposites (CT/ZnO BNCs) with different amounts of modified zinc oxide nanoparticles (ZnO NPs) through ultrasonic irradiation technique. Due to the high surface energy and tendency for agglomeration, the surface ZnO NPs was modified by a coupling agent as 3-aminopropyltriethoxysilane (APS) to form APS–ZnO nanoparticles. Fourier transform infrared (FTIR) spectroscopy confirmed that APS was successfully grafted onto the ZnO nanoparticles surface. Thermogravimetric analysis (TGA) revealed a surface coverage of the coupling molecule of 2.6 wt%. The resulting bionanocomposites were characterized by FTIR spectra, X-ray diffraction patterns, and TGA. The antibacterial activity of bionanocomposite films was tested against gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). The results of CT/ZnO BNCs revealed that the thermal and antibacterial properties obviously improved the presence of ZnO NPs in comparison with the pure CT and that this increase is higher when the NP content increases. Further, it was observed that antibacterial activity of the resulting hybrid biofilms showed somewhat higher for gram-positive bacteria compared to gram-negative bacteria.  相似文献   

16.
A multi-component polymer of methacrylic acid (MAA) and butyl acrylate (BA) grafted onto ethylene-propylene-diene (EPDM) terpolymer was synthesized in toluene using benzoyl peroxide (BPO) as initiator. The effect of EPDM/MAA-BA ratio and MAA/BA ratio on the grafting ratio of polymerization was investigated. The products were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), surface energy, inherent viscosity, and atomic force microscopy (AFM). The results showed that the MAA and BA monomers were successfully grafted onto EPDM. Furthermore, after being grafted, the polarity of the surface of the EPDM-g-MAA-BA increased with increasing grafting ratio, and the morphology of its surface became more smooth.  相似文献   

17.
《Current Applied Physics》2010,10(3):807-812
ZnO nanoparticles doped with Cu were synthesized by solid state reaction using different precursor routes and varying growth environment. Average crystallite size varied from 40 to 100 nm depending upon synthesis temperature, lower temperature favouring smaller particle size. Scanning electron microscope (SEM) images showed that particles synthesized at 250 °C were in the shape of nanorods but those synthesized at 900 °C had spherical shape. Luminescence emission showed marked dependence on the growth conditions varying from ultraviolet (UV) emission to green emission. For making the luminescent nanoparticles bio-compatible, a bioinorganic interface on ZnO:Cu nanoparticles was created by coating them with inert silica. Surface modification of ZnO:Cu was also done with lipophilic polymethylmethacrylate (PMMA). ZnO:Cu nanoparticles showed hexagonal wurtzite structure and the coating of silica was confirmed with the presence of two extra peaks due to silica in the XRD spectra. Thermogravimetric analysis (TGA) and FTIR spectroscopy indicated that PMMA molecules were adsorbed on the surface of ZnO:Cu nanoparticles. SEM images revealed that PMMA adsorption improved the dispersibilty of ZnO:Cu nanoparticles.  相似文献   

18.
Studies on surface modification of UHMWPE fibers via UV initiated grafting   总被引:1,自引:0,他引:1  
In this research, the surface of ultra high molecular weight polyethylene (UHMWPE) fiber was modified by high energy ultraviolet (UV) initiated grafting reactions and acrylamide groups were grafted onto UHMWPE chains. The initiating and grafting mechanism of the reactions was studied. Some important factors influencing the grafting effect, e.g. crystallinity of UHMWPE fiber, concentration of the initiating reagent, grafting time and the concentration of grafting monomer (acrylamide) were discussed. Fourier transform infrared (FTIR) was used to manifest the mechanism of the grafting reaction. Scanning electron microscopy (SEM) was used to show the morphology changing of the fiber surface. Single fiber pull-out strength and ILSS tests of the composite showed that acrylamide grafted onto the surface of the fiber could improve the interfacial adhesion between treated fibers and matrices.  相似文献   

19.
To convert the hydrophilic surface of wood into a hydrophobic surface, the present study investigated activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) as a method of grafting methyl methacrylate (MMA) onto the wood surface. The wood treated with 2-bromoisobutyryl bromide and with the subsequently attached MMA via ARGET ATRP under different polymerization times (2 h, 4 h, 6 h, 8 h) were examined using scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. All the analyses confirmed that PMMA had been grafted onto the wood surface. Water contact angle measurement proved that the covering layer of PMMA on wood made the surface hydrophobic. Polymerization time had a positive influence on the contact angle value and higher contact angle can be produced with the prolongation of the polymerization time. When the reaction time was extended to 8 h, the contact angle of treated wood surface reached 130° in the beginning, and remained at 116° after 60 s. The ARGET ATRP method may raise an alteration on the wood surface modification.  相似文献   

20.
Poly(methyl methacrylate) (PMMA)/organophilic montmorillonite (Cloisite 30B) nanocomposites were synthesized by the chemical grafting of PMMA onto Cloisite 30B via solution polymerization of methyl methacrylate (MMA) with vinyl-modified organoclay. The effects of different parameters such as clay weight percent (CWP), solvent per monomer volume ratio, and dispersion time on the properties of the PMMA grafted Cloisite 30B were investigated using the Taguchi experimental design method. This method gives a much-reduced variance for the experiments with optimum setting of control parameters and provides a set of minimum experiments compared to the conventional methods. Qualitative evidence for the chemical grafting of the PMMA onto Cloisite 30B was confirmed by Fourier transform infrared spectroscopy (FT-IR). X-ray diffraction (XRD) was used to investigate interlayer changes of the clay in the grafted nanoplatelets. The exfoliated/intercalated morphology of the nanocomposites was confirmed by XRD. Furthermore, thermal properties were measured by thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA). Statistical analysis of results revealed that clay weight percent and solvent per monomer ratio had significant effects on the properties of final products. The percent of grafted PMMA and storage modulus of PMMA/30B nanocomposites decreased with increasing clay content due to better dispersion of the clay at lower loadings. On the other hand, because of a tendency to formation of homopolymer and oligomers at higher solvent loadings; the percent of grafted PMMA, storage modulus and glass transition temperature of PMMA/30B nanocomposites decreased with an increase in solvent per monomer volume ratio. However, the obtained PMMA/30B nanocomposites at the optimum conditions, was exhibited a higher glass transition temperature, higher storage modulus and better thermal stability than the pure PMMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号