首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Using first-principles calculations we investigate the influence of interface modification and layer thicknesses on the optical properties of Si/SiO2 superlattices. Four interface models with different dangling-bond passivation are considered. The results demonstrate confinement effects not only for the fundamental band gaps but also for the optical properties. While for a large Si layer thickness of the Si/SiO2 superlattices the interface dependence is small, the calculations show a significant structure dependence for thin Si layers. © 2007 Elsevier Science. All rights reserved.  相似文献   

2.
The present status and key issues of surface passivation technology for III-V surfaces are discussed in view of applications to emerging novel III-V nanoelectronics. First, necessities of passivation and currently available surface passivation technologies for GaAs, InGaAs and AlGaAs are reviewed. Then, the principle of the Si interface control layer (ICL)-based passivation scheme by the authors’ group is introduced and its basic characterization is presented. Ths Si ICL is a molecular beam epitaxy (MBE)-grown ultrathin Si layer inserted between III-V semiconductor and passivation dielectric. Finally, applications of the Si ICL method to passivation of GaAs nanowires and GaAs nanowire transistors and to realization of pinning-free high-k dielectric/GaAs MOS gate stacks are presented.  相似文献   

3.
The effect of hydrogen on donors and interface defects in silicon modulation doped AlxGa1−xAs/InyGa1−yAs/GaAs heterostructures has been investigated by photoluminescence (PL). Hydrogenation was carried out on two sets of samples, one set consists of high quality pseudomorphic heterostructures and another set having partially lattice relaxed structures prone to the defects. On exposure of high quality pseudomorphic structures to hydrogen plasma above 150 °C, a significant blue shift in the PL peak positions as well as bandwidth narrowing is observed. This indicates, the reduction in two-dimensional electron gas in the InyGa1−yAs quantum well due to hydrogen passivation of silicon donors in the AlxGa1−xAs supply layer. The reactivation of the donors is observed upon annealing the hydrogenated sample for 1 h at 250 °C under hydrogen ambient. Another interesting feature is a significant improvement in the PL of lattice-relaxed structures upon hydrogenation of the samples above 250 °C, which is attributed to the hydrogen passivation of interface defects due to the misfit dislocations.  相似文献   

4.
Amorphous SiOx and SiOx : H films were prepared by thermal evaporation of SiO powder in ultrahigh vacuum or under a flow of hydrogen ions onto silicon substrates maintained at 100°C. Photoluminescence (PL) can be seen in the visible range with the naked eye on the as-deposited samples without post-treatments. Composition and structure investigations were performed by infrared and Raman spectrometry experiments on films annealed at different temperatures. Hydrogen and oxygen bonding was studied by infrared spectrometry. The PL is attributed to the quantum confinement of excitons in a-Si clusters embedded in the a-SiOx matrix. Our results demonstrate that oxygen creates an efficient potential barrier and no further passivation by hydrogen is necessary.  相似文献   

5.
对nc-Si/SiO2薄膜中纳米硅(nc-Si)、Er3+和非辐射复合缺陷三者间的关系作了研究.在514.5 nm光激发下,nc-Si/SiO2薄膜在750nm和1.54μm处存在较强的发光,前者与薄膜中的nc-Si有关,后者对应于Er3+从第一激发态4I13/2到基态4I15/2的辐射跃迁.随薄膜中Er3+含量的提高,1.54μm处的发光强度明显增强,750 nm处的发光强度却降低.H处理可以明显增强薄膜的发光强度,但是对不同退火温度样品,处理效果却有所不同.根据以上实验结果,可得如下结 关键词: Er3+ nc-Si H处理  相似文献   

6.
Temperature-dependent photoluminescence (PL) from Si nanodots with Al2O3 surface passivation layers was studied. The Si nanodots were grown by low pressure chemical vapor deposition and the Al2O3 thin films were prepared by atomic layer deposition (ALD), respectively. The BOE (Buffer-Oxide-Etch) treatment resulted in the damaged surface of Si nanodots and thus caused dramatic reduction in the PL intensity. Significant enhancement of the PL intensity from Si nanodots after the deposition of Al2O3 thin films was observed over a wide temperature range, indicating the remarkable surface passivation effect to suppress the non-radiative recombination at the surface of Si nanodots. The results demonstrated that the Al2O3 surface passivation layers grown by ALD are effectually applicable to nanostructured silicon devices.  相似文献   

7.
《中国物理 B》2021,30(9):97101-097101
It is well known that in the process of thermal oxidation of silicon,there are P_b-type defects at amorphous silicon dioxide/silicon(a-SiO_2/Si) interface due to strain.These defects have a very important impact on the performance and reliability of semiconductor devices.In the process of passivation,hydrogen is usually used to inactivate P_b-type defects by the reaction P_b+H_2→P_bH+H.At the same time,P_bH centers dissociate according to the chemical reaction P_bH→P_b+H.Therefore,it is of great significance to study the balance of the passivation and dissociation.In this work,the reaction mechanisms of passivation and dissociation of the P_b-type defects are investigated by first-principles calculations.The reaction rates of the passivation and dissociation are calculated by the climbing image-nudged elastic band(CI-NEB)method and harmonic transition state theory(HTST).By coupling the rate equations of the passivation and dissociation reactions,the equilibrium density ratio of the saturated interfacial dangling bonds and interfacial defects(P_b,P_(b0),and P_(b1))at different temperatures is calculated.  相似文献   

8.
Effects of the passivation of SiNx on the high temperature transport characteristics of the two-dimensional electron gas (2DEG) in unintentionally doped AlxGa1−xN/GaN heterostructures have been investigated by means of high temperature Hall measurements. The 2DEG density increases much after SiNx passivation, and the increment is proportional to the Si content in SiNx layer, indicating that the increment is mainly caused by ionized Si atoms at the SiN/AlxGa1−xN interface with dangling bonds or by Si atoms incorporated into the AlxGa1−xN layer during the SiNx growth, which is approved by strain analysis and X-ray photoemission spectroscopy (XPS). There is lower 2DEG mobility at room temperature in a passivated sample than in an unpassivated one. However, the 2DEG mobility becomes to be higher in a passivated sample than in an unpassivated one when the temperature is above 250 °C, which is suggested to be caused by different subband occupation ratios in the triangular quantum well at the heterointerface before and after passivation.  相似文献   

9.
Desorption kinetics of SiO in the reaction of O2 with Si(100) and (111) surfaces were investigated at surface temperatures between 1000 and 1300 K by using a pulsed molecular beam technique. The gaseous SiO product was detected by a mass spectrometer above 1000 K. At temperatures lower than 1050 K, the SiO signal appeared with an induction time after the O2 beam irradiation onto the surface, which means that the desorption occurs via sequential steps. The rate constants for two steps were obtained by a computer simulation of the relaxation waveforms of the SiO signal. The values obtained are in the same range as those of D'Evelyn et al. However, they are one order of magnitude larger than those of Yu and Eldridge. The activation energies for the two steps are 2.8 and 2.4 eV for both Si(100) and (111) surfaces. No significant difference between the two kinds of surfaces was found from these values. However, many etch pits were observed on the Si(100) surface after the reaction, while no such etch pits were formed on the Si(111) surface. The planes of the etch pits formed on the (100) surfaces consisted mostly of the {111} facets.  相似文献   

10.
This work demonstrates that by combining three methods with different mechanisms to enhance the photoluminescence (PL) intensity of Si nanocrystals embedded in SiO2 (or Si-nc:SiO2), a promising material for developing Si light sources, a very high PL intensity can be achieved. A 30-layered sample of Si-nc:SiO2/SiO2 was prepared by alternatively evaporating SiO and SiO2 onto a Si(1 0 0) substrate followed by thermal annealing at 1100 °C. This multilayered sample possessed a fairly high PL efficiency of 14% as measured by Greenham's method, which was 44 times that of a single-layered one for the same amount of excess Si content. Based on this multilayered sample, treatments of CeF3 doping and hydrogen passivation were subsequently applied, and a high PL intensity which was 167 times that of a single-layered one for the same amount of excess Si content was achieved.  相似文献   

11.
The use of hydrogen passivation of the silicon layers in Si/W soft X-ray reflective multilayer mirrors is investigated. Standard passivation, corresponding to Si:H/W structures, led to reduced growth properties of the W layers. The additional use of atomically thin Si adhesion layers, corresponding to Si:H/Si/W, led to improved growth and increased soft X-ray reflectivity. The effects taking place at the interfaces are analysed by bright field planar TEM and in situ X-ray reflectivity, and are described in terms of interface and surface energies, with quantitatively analysis of intermixing, materials density, and geometrical optical effects.  相似文献   

12.
Based on the surface passivation of n-type silicon in a silicon drift detector(SDD), we propose a new passivation structure of SiO2/Al2O3/SiO2 passivation stacks. Since the SiO2 formed by the nitric-acid-oxidation-of-silicon(NAOS)method has good compactness and simple process, the first layer film is formed by the NAOS method. The Al2O3 film is also introduced into the passivation stacks owing to exceptional advantages such as good interface characteristic and simple process. In addition, for requirements of thickness and deposition temperature, the third layer of the SiO2 film is deposited by plasma enhanced chemical vapor deposition(PECVD). The deposition of the SiO2 film by PECVD is a low-temperature process and has a high deposition rate, which causes little damage to the device and makes the SiO2 film very suitable for serving as the third passivation layer. The passivation approach of stacks can saturate dangling bonds at the interface between stacks and the silicon substrate, and provide positive charge to optimize the field passivation of the n-type substrate.The passivation method ultimately achieves a good combination of chemical and field passivations. Experimental results show that with the passivation structure of SiO2/Al2O3/SiO2, the final minority carrier lifetime reaches 5223 μs at injection of 5×1015 cm-3. When it is applied to the passivation of SDD, the leakage current is reduced to the order of nA.  相似文献   

13.
非晶Si/SiO2超晶格结构的交流电致发光   总被引:1,自引:1,他引:0       下载免费PDF全文
设计并用磁控溅射方法制备了非晶Si/SiO2超晶格结构,以高纯多晶Si为靶材,当以Ar+O2为溅射气氛时,得到SiO2膜,仅以Ar为气氛时,得到Si膜。重复地开和关O2气,便交替地得到SiO2和Si膜。衬底在靶前往返平移,改变平移的速度或者改变溅射的功率,可以控制膜的厚度。通过透民镜的照片可以看出SiO2和Si膜具有均匀的周期结构,用低角X-射线反射谱表征了超晶格的周期结构和各层的厚度。透射光谱表  相似文献   

14.
pacc:7830,8100 WereportthepressuredependenceofGe nanocrystalsembeddedinSiO2filmmatrixonSi substrateusingRamanscatteringandfiniteele mentanalysis.DelaminationofSiO2filmfromthe Sisubstrateoccursat~23kbarduetothelarge differencebetweenthecompressibilityoft…  相似文献   

15.
We investigate the properties of light emission from amorphous-Si:H/SiO2 and nc-Si/SiO2 multilayers (MLs). The size dependence of light emission is well exhibited when the a-Si:H sublayer thickness is thinner than 4 nm and the interface states are well passlvated by hydrogen. For the nc-Si/Si02 MLs, the oxygen modified interface states and nanocrystalline silicon play a predominant role in the properties of light emission. It is found that the light emission from nc-Si/SiO2 is in agreement with the model of interface state combining with quantum confinement when the size of nc-Si is smaller than 4 nm. The role of hydrogen and oxygen is discussed in detail.  相似文献   

16.
The low thermal stability of hydrogenated amorphous silicon (a‐Si:H) thin films limits their widespread use for surface passivation of c‐Si wafers on the rear side of solar cells. We show that the thermal stability of a‐Si:H surface passivation is increased significantly by a hydrogen rich a‐Si:H bulk, which acts as a hydrogen reservoir for the a‐Si:H/c‐Si interface. Based on this mechanism, an excellent lifetime of 5.1 ms (at injection level of 1015 cm–3) is achieved after annealing at 450 °C for 10 min. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Currently, III-V metal-insulator-semiconductor field effect transistors (MISFETs) are considered to be promising device candidates for the so-called “More Moore Approach” to continue scaling CMOS transistors on the silicon platform. Strong interest also exists in III-V nanowire MISFETs as a possible candidate for a “Beyond CMOS”-type device. III-V sensors using insulator-semiconductor interfaces are good candidates for “More Moore”-type of devices on the Si platform. The success of these new approaches for future electronics depends on the availability of a surface passivation technology which can realize pinning-free, high-quality interfaces between insulator and III-V semiconductors.This paper reviews the past history, present status and key issues of the research on the surface passivation technology for III-V semiconductors. First, a brief survey of previous research on surface passivation and MISFETs is made, and Fermi level pinning at insulator-semiconductor interface is discussed. Then, a brief review is made on recent approaches of interface control for high-k III-V MIS structures. Subsequently, as an actual example of interface control, latest results on the authors’ surface passivation approach using a silicon interface control layer (Si ICL) are discussed. Finally, a photoluminescence (PL) method to characterize the interface quality is presented as an efficient contactless and non-destructive method which can be applied at each step of interface formation process without fabrication of MIS capacitors and MISFETs.  相似文献   

18.
A multilayered Si nanocrystal-doped SiO2/Si (or Si-nc:SiO2/Si) sample structure is studied to acquire strong photoluminescence (PL) emission of Si via modulating excess Si concentration. The Si-nc:SiO2 results from SiO thin film after thermal annealing. The total thickness of SiO layer remains 150 nm, and is partitioned equally into a number of sublayers (N = 3, 5, 10, or 30) by Si interlayers. For each N-layered sample, a maximal PL intensity of Si can be obtained via optimizing the thickness of Si interlayer (or dSi). This maximal PL intensity varies with N, but the ratio of Si to O is nearly a constant. The brightest sample is found to be that of N = 10 and dSi = 1 nm, whose PL intensity is ∼5 times that of N = 1 without additional Si doping, and ∼2.5 times that of Si-nc:SiO2 prepared by co-evaporating of SiO and Si at the same optimized ratio of Si to O. Discussions are made based on PL, TEM, EDX and reflectance measurements.  相似文献   

19.
采用基于密度泛函理论的第一性原理方法,在局域密度近似(LDA)下研究了B掺杂Si/SiO_2界面及其在压强作用下的电子结构和光学性质.能带的计算结果表明:掺杂前后Si/SiO_2界面均属于直隙半导体材料,但掺B后界面带隙由0. 74 eV减小为0. 57 eV,说明掺B使材料的金属性增强;对B掺杂Si/SiO_2界面施加正压强,发现随着压强不断增大,Si/SiO_2界面的带隙呈现了逐渐减小的趋势,并且由直隙逐渐转变为间隙.光学性质的计算结果表明:掺B对Si/SiO_2界面在低能区(即红外区)的介电函数虚部、吸收系数、折射率以及反射率等光学参数有显著影响,且在红外区出现新的吸收峰;对B掺杂Si/SiO_2界面施加正压强,随着压强增大,红外区的吸收峰逐渐消失,而在紫外区出现了吸收峰.上述结果表明,对Si/SiO_2界面掺B及施加正压强均可调控Si/SiO_2界面的电子结构与光学性质.本文的研究为基于Si/SiO_2界面的光电器件研究与设计提供一定的理论参考.  相似文献   

20.
用高分辨X射线衍射仪(HRXRD)研究了表面钝化前后Al0.22Ga0.78N/ GaN异质结势垒层应变的高温特性,温度变化范围从室温到813K.结果表明,对未钝化的异质 结,当测试温度高于523K时,Al0.22Ga0.78N势垒层开始出现应变 弛豫;钝化后,在Al0.22Ga0.78N势垒层中会产生一个附加的平面 拉伸应变,并随着温度的增加,势垒层中的平面拉伸应变会呈现出一个初始的增加,接着应 变将减小,对100nm厚的Al0.22Ga0.78N势垒层,应变只是轻微地减 小,但对于50nm厚的Al0.22Ga0.78N势垒层,则出现了严重的应变 弛豫现象. 关键词: 0.22Ga0.78N/GaN异质结')" href="#">Al0.22Ga0.78N/GaN异质结 应变 3 N4钝化')" href="#">Si3 N4钝化 高温XRD  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号