首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
讨论了中立型差分方程的非振动解.首先由非振动解的渐进性质把非振动解分成两类.其次分别给出存在这两类非振动解的充分条件.最后给出例子说明定理的应用.  相似文献   

2.
本文首先研究了具有正负号系数的线性中立型时超微分不等式解的振动性。获得了其解振动的判定准则,然后应用该准则研究了非线性中立型时超微分方程和n维非线性中立型时超微分方程组解的振动性。获得其解振动的充分条件。  相似文献   

3.
中立抛物型时滞偏微分方程解振动的充要条件   总被引:10,自引:0,他引:10  
刘安平  何水明  李星 《数学杂志》2003,23(3):333-336
本丈讨论一类多滞量中立抛物型时滞偏微分方程解的振动性质。获得了其一切解振动的充要条件;所得充要条件将时滞偏微分方程解的振动判别问题转化为时滞微分方程解的振动判别问题;指出了其与普通抛物型偏微分方程解的质的差异.  相似文献   

4.
具有脉冲扰动的非线性时滞微分方程   总被引:25,自引:0,他引:25  
申建华  庚建设 《应用数学》1996,9(3):272-277
本文研究一类脉冲非线性时滞微分方程解的性质,讨论了其解的整体存在性及非振动解的渐近性,也给出了其所有解振动的充分条件.  相似文献   

5.
本文考虑一类非线性延迟微分方程-带有单峰造血率的造血模型数值解的振动性及非振动性。运用线性化理论,把非线性差分方程的振动性转化为其对应的线性差分方程的振动性,通过判断线性方程的特征方程根的情况,得到了非线性差分方程振动和存在非振动解的充分条件。对于非振动的数值解,证明了非振动的数值解最终都趋于方程的平衡解。为了更有力的说明我们的结果给出了相应的算例.  相似文献   

6.
证明了线性脉冲中立型时滞微分方程解的振动性等价于一类非脉冲中立型时滞微分方程解的振动性,应用这一结果建立了此类线性脉冲中立型微分方程解的振动性的显示判据。  相似文献   

7.
本文讨论一类含阻尼项双曲时滞微分方程解的振动性质,获得了一切解振动的充要条件  相似文献   

8.
本文讨论一类线性中立双曲型时滞微分方程解的振动性质,获得了其一切解振动的充要条件.  相似文献   

9.
双曲偏泛函微分方程解的振动性   总被引:6,自引:0,他引:6  
讨论了一类双曲偏泛函微分方程解的振动性,给出了在三类边界条件下解的振动准则。  相似文献   

10.
该文考虑一类非线性延迟微分方程数值解的振动性.通过振动性的理论将这个非线性延迟微分方程的振动性转化为相应的线性延迟微分方程的振动性,再利用线性θ-方法的相关内容得到相应数值解的形式,从而得到数值解振动的条件以及非振动解的一些性质.为了更有力说明结果,最后给出了相应的算例.  相似文献   

11.
The Auxiliary equation method is used to find analytic solutions for the Kawahara and modified Kawahara equations. It is well known that different types of exact solutions of the given auxiliary equation produce new types of exact travelling wave solutions to nonlinear equations. In this paper, new exact solutions of the auxiliary equation are presented. Using these solutions, many new exact travelling wave solutions for the Kawahara type equations are obtained.  相似文献   

12.
We consider solitary-wave solutions of the generalized regularized long-wave (RLW) and Korteweg-de Vries (KdV) equations. We prove the convergence of Adomian decomposition method applied to the generalized RLW and KdV equations. Then we obtain the exact solitary-wave solutions and numerical solutions of the generalized RLW and KdV equations for the initial conditions. The numerical solutions are compared with the known analytical solutions. Their remarkable accuracy are finally demonstrated for the generalized RLW and KdV equations.  相似文献   

13.
利用Banach空间中的锥理论和不动点定理讨论了非线性算子方程变号解的存在性,给出了E_u_0空间下非线性算子方程变号解至少有一个变号解、一个正解和一个负解的条件,并讨论了仅通过一个上解条件得出非线性算子方程变号解的存在性定理.  相似文献   

14.
We consider some triple series equations involving generalized Laguerre polynomials. These equations are reduced to triple integral equations for Bessel functions. The closed-form solutions of the triple integral equations for Bessel functions are obtained and, finally, we get the closed-form solutions of triple series equations for Laguerre polynomials.  相似文献   

15.
This article studies positive solutions of Robin problem for semi-linear second order ordinary differential equations. Nondegeneracy and uniqueness results are proven for homogeneous differential equations. Necessary and sufficient conditions for the existence of one or two positive solutions for inhomogeneous differential equations or differential equations with concave-convex nonlinearities are obtained by making use of the nondegeneracy and uniqueness results for positive solutions of homogeneous differential equations.  相似文献   

16.
We study the existence of traveling wave solutions for reaction-diffusion equations with nonlocal delay, where reaction terms are not necessarily monotone. The existence of traveling wave solutions for reaction-diffusion equations with nonlocal delays is obtained by combining upper and lower solutions for associated integral equations and the Schauder fixed point theorem. The smoothness of upper and lower solutions is not required in this paper.  相似文献   

17.
A method for finding exact solutions of nonlinear differential equations is presented. Our method is based on the application of polygons corresponding to nonlinear differential equations. It allows one to express exact solutions of the equation studied through solutions of another equation using properties of the basic equation itself. The ideas of power geometry are used and developed. Our approach has a pictorial interpretation, which is illustrative and effective. The method can be also applied for finding transformations between solutions of differential equations. To demonstrate the method application exact solutions of several equations are found. These equations are: the Korteveg–de Vries–Burgers equation, the generalized Kuramoto–Sivashinsky equation, the fourth-order nonlinear evolution equation, the fifth-order Korteveg–de Vries equation, the fifth-order modified Korteveg–de Vries equation and the sixth-order nonlinear evolution equation describing turbulent processes. Some new exact solutions of nonlinear evolution equations are given.  相似文献   

18.
In this paper, we establish exact solutions for complex nonlinear equations. The tanh–coth and the sine–cosine methods are used to construct exact periodic and soliton solutions of these equations. Many new families of exact travelling wave solutions of the coupled Higgs and Maccari equations are successfully obtained. These solutions may be important of significance for the explanation of some practical physical problems.  相似文献   

19.
利用辅助方程与函数变换相结合的方法,构造了Degasperis-Procesi(D-P)方程的无穷序列类孤子新解.首先,通过两种函数变换,把D-P方程化为常微分方程组.然后,利用常微分方程组的首次积分,把D-P方程的求解问题化为几种常微分方程的求解问题.最后,利用几种常微分方程的Bcklund变换等相关结论,构造了D-P方程的无穷序列类孤子新解.这里包括由Riemannθ函数、Jacobi椭圆函数、双曲函数、三角函数和有理函数组成的无穷序列光滑孤立子解、尖峰孤立子解和紧孤立子解.  相似文献   

20.
This paper presents approximate analytical solutions for systems of fractional differential equations using the differential transform method. The fractional derivatives are described in the Caputo sense. The application of differential transform method, developed for differential equations of integer order, is extended to derive approximate analytical solutions of systems of fractional differential equations. The solutions of our model equations are calculated in the form of convergent series with easily computable components. Some examples are solved as illustrations, using symbolic computation. The numerical results show that the approach is easy to implement and accurate when applied to systems of fractional differential equations. The method introduces a promising tool for solving many linear and nonlinear fractional differential equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号