首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对于一个有穷非零复数$q$, 若下列$q$差分方程存在一个非常数亚纯解$f$, $$f(qz)f(\frac{z}{q})=R(z,f(z))=\frac{P(z,f(z))}{Q(z,f(z))}=\frac{\sum_{j=0}^{\tilde{p}}a_j(z)f^{j}(z)}{\sum_{k=0}^{\tilde{q}}b_k(z)f^{k}(z)},\eqno(\dag)$$ 其中 $\tilde{p}$和$\tilde{q}$是非负整数, $a_j$ ($0\leq j\leq \tilde{p}$)和$b_k$ ($0\leq k\leq \tilde{q}$)是关于$z$的多项式满足$a_{\tilde{p}}\not\equiv 0$和$b_{\tilde{q}}\not\equiv 0$使得$P(z,f(z))$和$Q(z,f(z))$是关于$f(z)$互素的多项式, 且$m=\tilde{p}-\tilde{q}\geq 3$. 则在$|q|=1$时得到方程$(\dag)$不存在亚纯解, 在$m\geq 3$和$|q|\neq 1$时得到方程$(\dag)$解$f$的下级的下界估计.  相似文献   

2.
Let ∈ :N → R be a parameter function satisfying the condition ∈(k) + k + 1 > 0and let T∈ :(0,1] →(0,1] be a transformation defined by T∈(x) =-1 +(k + 1)x1 + k-k∈x for x ∈(1k + 1,1k].Under the algorithm T∈,every x ∈(0,1] is attached an expansion,called generalized continued fraction(GCF∈) expansion with parameters by Schweiger.Define the sequence {kn(x)}n≥1of the partial quotients of x by k1(x) = ∈1/x∈ and kn(x) = k1(Tn-1∈(x)) for every n ≥ 2.Under the restriction-k-1 < ∈(k) <-k,define the set of non-recurring GCF∈expansions as F∈= {x ∈(0,1] :kn+1(x) > kn(x) for infinitely many n}.It has been proved by Schweiger that F∈has Lebesgue measure 0.In the present paper,we strengthen this result by showing that{dim H F∈≥12,when ∈(k) =-k-1 + ρ for a constant 0 < ρ < 1;1s+2≤ dimHF∈≤1s,when ∈(k) =-k-1 +1ksfor any s ≥ 1where dim H denotes the Hausdorff dimension.  相似文献   

3.
In this paper, we have studied the separation for the biharmonic Laplace-Beltrami differential operator\begin{equation*}Au(x)=-\Delta \Delta u(x)+V(x)u(x),\end{equation*}for all $x\in R^{n}$, in the Hilbert space $H=L_{2}(R^{n},H_{1})$ with the operator potential $V(x)\in C^{1}(R^{n},L(H_{1}))$, where $L(H_{1})$ is the space of all bounded linear operators on the Hilbert space $H_{1}$, while $\Delta \Delta u$\ is the biharmonic differential operator and\begin{equation*}\Delta u{=-}\sum_{i,j=1}^{n}\frac{1}{\sqrt{\det g}}\frac{\partial }{{\partial x_{i}}}\left[ \sqrt{\det g}g^{-1}(x)\frac{\partial u}{{\partial x}_{j}}\right]\end{equation*}is the Laplace-Beltrami differential operator in $R^{n}$. Here $g(x)=(g_{ij}(x))$ is the Riemannian matrix, while $g^{-1}(x)$ is the inverse of the matrix $g(x)$. Moreover, we have studied the existence and uniqueness Theorem for the solution of the non-homogeneous biharmonic Laplace-Beltrami differential equation $Au=-\Delta \Delta u+V(x)u(x)=f(x)$ in the Hilbert space $H$ where $f(x)\in H$ as an application of the separation approach.  相似文献   

4.
ON A MULTILINEAR OSCILLATORY SINGULAR INTEGRAL OPERATOR (I)   总被引:2,自引:0,他引:2  
ONAMULTILINEAROSCILLATORYSINGULARINTEGRALOPERATOR(I)CHENWENGUHUGUOENLUSHANZHENManuscriptreceivedOctober18,1994.RevisedDece...  相似文献   

5.
Let $s_n(f,z):=\sum_{k=0}^{n}a_kz^k$ be the $n$th partial sum of $f(z)=\sum_{k=0}^{\infty{}}a_kz^k$. We show that $\RE s_n(f/z,z)>0$ holds for all $z\in\D,\ n\in\N$, and all starlike functions $f$ of order $\lambda$ iff $\lambda_0\leq\lambda<1$ where $\lambda_0=0.654222...$ is the unique solution $\lambda\in(\frac{1}{2},1)$ of the equation $\int_{0}^{3\pi/2}t^{1-2\lambda}\cos t \,dt=0$. Here $\D$ denotes the unit disk in the complex plane $\C$. This result is the best possible with respect to $\lambda_0$. In particular, it shows that for the Gegenbauer polynomials $C_{n}^{\mu}(x)$ we have $\sum_{k=0}^n C_{k}^{\mu}(x)\cos k \theta>0$ for all $n\in\N,\ x\in[-1,1]$, and $0<\mu\leq\mu_0:=1-\lambda_0=0.345778...$. This result complements an inequality of Brown, Wang, and Wilson (1993) and extends a result of Ruscheweyh and Salinas (2000).  相似文献   

6.
Let P(z) be a polynomial of degree n which does not vanish in |z| k, k ≥ 1.It is known that for each 0 ≤ s n and 1 ≤ R ≤ k,M (P~(s), R )≤( 1/(R~s+ k~s))[{d~((s)/dx(s))(1+x~n)}_(x=1)]((R+k)/(1+k))~nM(P,1).In this paper, we obtain certain extensions and refinements of this inequality by involving binomial coefficients and some of the coefficients of the polynomial P(z).  相似文献   

7.
本文首先引入满足如下条件$$-\frac{qzD_{q}f(z)}{f(z)}\prec \varphi (z)$$和$$\frac{-(1-\frac{\alpha }{q})qzD_{q}f(z)+\alpha qzD_{q}[zD_{q}f(z)]}{(1-\frac{\alpha}{q})f(z)-\alpha zD_{q}f(z)}\prec \varphi (z)~(\alpha \in\mathbb{C}\backslash (0,1],\ 0相似文献   

8.
Let $$\mathcal {A}$$ be a standard operator algebra on a Banach space $$\mathcal {X}$$ with $$ \dim \mathcal {X}\ge 3$$. In this paper, we determine the form of the bijective maps $$\phi :\mathcal {A}\longrightarrow \mathcal {A}$$ satisfying $$\begin{aligned} \phi \left( \frac{1}{2}(AB^2+B^2A)\right) = \frac{1}{2}[\phi (A)\phi (B)^{2}+\phi (B)^{2}\phi (A)], \end{aligned}$$for every $$A,B \in \mathcal {A}$$.  相似文献   

9.
对x=(x_1,…,x_n)∈[0,1)~n∪(1,+∞o)~n,定义对称函数■其中r∈N,i_1,i_2,…,i_n为非负整数.研究了F_n(x,r)的Schur凸性、Schur乘性凸性和Schur调和凸性.作为应用,用控制理论建立了一些不等式,特别地,给出了高维空间的一些新的几何不等式.  相似文献   

10.
In this paper, we are concerned with the properties of positive solutions of the following nonlinear integral systems on the Heisenberg group $\mathbb{H}^n$, \begin{equation} \left\{\begin{array}{ll} u(x)=\int_{\mathbb{H}^n}\frac{v^{q}(y)w^{r}(y)}{|x^{-1}y|^\alpha|y|^\beta}\,dy,\\ v(x)=\int_{\mathbb{H}^n}\frac{u^{p}(y)w^{r}(y)}{|x^{-1}y|^\alpha|y|^\beta}\,dy,\\ w(x)=\int_{\mathbb{H}^n}\frac{u^{p}(y)v^{q}(y)}{|x^{-1}y|^\alpha|y|^\beta}\,dy,\\ \end{array}\right.\end{equation} for $x\in \mathbb{H}^n$, where $0<\alpha 1$ satisfying $\frac{1}{p+1} $+ $\frac{1}{q+1} + \frac{1}{r+1} = \frac{Q+α+β}{Q}.$ We show that positive solution triples $(u,v,w)\in L^{p+1}(\mathbb{H}^n)\times L^{q+1}(\mathbb{H}^n)\times L^{r+1}(\mathbb{H}^n)$ are bounded and they converge to zero when $|x|→∞.$  相似文献   

11.
In this article we generahze the polynomials of Kantorovitch \({P_n}(f)\) . Let \({B_n}\) be a sequence of linear operators from C[a,b] into \({H_n}\), if \[f(t) \in L[a,b],F(u) = \int_a^u {f(t)dt} ,{A_n}(f(t),x) = \frac{d}{{dx}}{B_{n + 1}}(F(u),x)\], here \({B_n}\)satisfy\[\begin{array}{l} (a):{B_n}(1,x) \equiv 1,{B_n}(u,x) \equiv x;\(b):for{\kern 1pt} {\kern 1pt} g(u) \in C[a,b]{\kern 1pt} {\kern 1pt} we{\kern 1pt} {\kern 1pt} have{\kern 1pt} {\kern 1pt} {B_n}(g(u),b) = g(b). \end{array}\]. we call such \({A_n}(f)\) generalized polynomials of Kantorovitch (denoted by \({A_n}(f) \in K\) ). Let \[\begin{array}{l} {\varepsilon _n}({W^2};x)\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}} \left| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right|,\{\varepsilon _n}{({W^2}{L^p})_{{L^p}}}\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}{L^p}} {\left\| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right\|_p}. \end{array}\] We have proved the following results: Let An he a sequence of linear continuous operators of type \[C[a,b] \Rightarrow C[a,b],{D_n}(x,z)\mathop = \limits^{def} {A_n}(\left| {t - z} \right|,x) - \left| {x - z} \right| - ({A_n}(t,x) - x)Sgn(x - z),{A_n}(1,x) = 1\] then (1):\({\varepsilon _n}({W^2};x) = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dz\), (2): Moreover, if \({A_n}\) be a sequence of linear positive operators, then for \(\left[ {\begin{array}{*{20}{c}} {a \le x \le b}\{a \le z \le b} \end{array}} \right]\) ,we have \({D_n}(x,z) \ge 0\), and \({\varepsilon _n}({W^2};x) = \frac{1}{2}{A_n}({(t - x)^2},x)\). Let \({A_n}(f) \in K\) be a sequence of linear positive operators,\[{R_n}{(z)_L} = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dx\],then \[{R_n}{(z)_L} = \frac{1}{2}\left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right]\] and \[{\varepsilon _n}{({W^2}L)_L}{\rm{ = }}\frac{1}{2}\left\| {{B_{n + 1}}({u^2},z) - {z^2}} \right\|\]. Let \[{g_n} = \frac{1}{2}\mathop {\max }\limits_{a \le x \le b} {A_n}({(t - x)^2},x),{h_n} = \frac{1}{2}\mathop {\max }\limits_{a \le z \le b} \left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right],\] then \[{\varepsilon _n}{({W^2}{L^p})_{{L^p}}} \le {g_n}^{1 - \frac{1}{p}}{h_n}^{\frac{1}{p}}(1 < p < \infty ).\]  相似文献   

12.
Let 1≤N<M with N and M coprime and square-free. Through classical analytic methods we estimate the first moment of central L-values $L(\frac{1}{2},f\times g)$ where $f\in\mathcal{S}^{*}_{k}(N)$ runs over primitive holomorphic forms of level N and trivial nebentypus and g is a given form of level M. As a result, we recover the bound $L(\frac{1}{2},f\times g) \ll_{\varepsilon}(N + \sqrt{M}) N^{\varepsilon}M^{\varepsilon}$ when g is dihedral. The first moment method also applies to the special derivative $L'(\frac{1}{2},f\times g)$ under the assumption that it is non-negative for all $f\in\mathcal{S}^{*}_{k}(N)$ .  相似文献   

13.
本文主要研究一类复线性微分差分方程超越亚纯解的唯一性.特别地,假设$f(z)$为复线性微分差分方程: $W_{1}(z)f''(z+1)+W_{2}(z)f(z)=W_{3}(z)$的一个有穷级超越亚纯解,其中$W_{1}(z)$, $W_{2}(z)$, $W_{3}(z)$为增长级小于1的非零亚纯函数并且满足$W_{1}(z)+W_{2}(z)\not\equiv 0$.若$f(z)$与亚纯函数$g(z)$, $CM$分担0,1,$\infty$,则$f(z)\equiv g(z)$或$f(z)+g(z)\equiv f(z)g(z)$或$f^{2}(z)(g(z)-1)^2+g^{2}(z)(f(z)-1)^2=g(z)f(z)(g(z)f(z)-1)$或存在一个多项式$\varphi(z)=az+b_{0}$使得$f(z)=\frac{1-e^{\varphi(z)}}{e^{\varphi(z)}(e^{a_{0}-b_{0}}-1)}$与$g(z)=\frac{1-e^{\varphi(z)}}{1-e^{b_{0}-a_{0}}}$,其中$a(\neq 0)$, $a_{0}$ $b_{0}$均为常数且$a_{0}\neq b_{0}$.  相似文献   

14.
设X(t)(t∈R )是一个d维非退化扩散过程.本文得到了比原有结果更一般的非退化扩散过程极性的充分条件,证明了对任意u∈Rd,紧集E(0, ∞),有若d=1,则对任意紧集F(?)R, 若d≥2,则对任意紧集E ∈(0, ∞), 其中B(Rd)为Rd上的Borel σ-代数,dim和Dim分别表示Hausdorff维数和Packing 维数.  相似文献   

15.
On the real line, the Dunkl operators$$D_{\nu}(f)(x):=\frac{d f(x)}{dx} + (2\nu+1) \frac{f(x) - f(-x)}{2x}, ~~ \quad\forall \, x \in \mathbb{R}, ~ \forall \, \nu \ge -\tfrac{1}{2}$$are differential-difference operators associated with the reflection group $\mathbb{Z}_2$ on $\mathbb{R}$, and on the $\mathbb{R}^d$ the Dunkl operators $\big\{D_{k,j}\big\}_{j=1}^{d}$ are the differential-difference operators associated with the reflection group $\mathbb{Z}_2^d$ on $\mathbb{R}^{d}$.In this paper, in the setting $\mathbb{R}$ we show that $b \in BMO(\mathbb{R},dm_{\nu})$ if and only if the maximal commutator $M_{b,\nu}$ is bounded on Orlicz spaces $L_{\Phi}(\mathbb{R},dm_{\nu})$. Also in the setting $\mathbb{R}^{d}$ we show that $b \in BMO(\mathbb{R}^{d},h_{k}^{2}(x) dx)$ if and only if the maximal commutator $M_{b,k}$ is bounded on Orlicz spaces $L_{\Phi}(\mathbb{R}^{d},h_{k}^{2}(x) dx)$.  相似文献   

16.
P(t,n)和C(t,n)分别表示在阶为n的路和圈中添加t条边后得到的图的最小直径;f(t,k)表示从直径为k的图中删去t条边后得到的连通图的最大直径.这篇文章证明了t≥4且n≥5时,P(t,n)≤(n-8)/(t 1) 3;若t为奇数,则C(t,n)≤(n-8)/(t 1) 3;若t为偶数,则C(t,n)≤(n-7)/(t 2) 3.特别地,「(n-1)/5」≤P(4,n)≤「(n 3)/5」,「n/4」-1≤C(3,n)≤「n/4」.最后,证明了:若k≥3且为奇数,则f(t,k)≥(t 1)k-2t 4.这些改进了某些已知结果.  相似文献   

17.
假设a,b0并且K_(a,b)(x)=(e~(i|x|~(-b)))/(|x|~(n+a))定义强奇异卷积算子T如下:Tf(x)=(K_(a,b)*f)(x),本文主要考虑了如上定义的算子T在Wiener共合空间W(FL~p,L~q)(R~n)上的有界性.另一方面,设α,β0并且γ(t)=|t|~k或γ(t)=sgn(t)|t|~k.利用振荡积分估计,本文还研究了算子T_(α,β)f(x,y)=p.v∫_(-1)~1f(x-t,y-γ(t))(e~(2πi|t|~(-β)))/(t|t|~α)dt及其推广形式∧_(α,β)f(x,y,z)=∫_(Q~2)f(x-t,y-s,z-t~ks~j)e~(-2πit)~(-β_1_s-β_2)t~(-α_1-1)s~(-α_2-1)dtds在Wiener共合空间W(FL~p,L~q)上的映射性质.本文的结论足以表明,Wiener共合空间是Lebesgue空间的一个很好的替代.  相似文献   

18.
This paper is devoted to investigating regularity criteria for the 3-D nematic liquid crystal flows in terms of horizontal derivative components of the pressure and gradient of the orientation field. More precisely, we mainly proved that the strong solution(u, d)can be extended beyond T, provided that the horizontal derivative components of the pressure■ and gradient of the orientation field satisfy■ and■.  相似文献   

19.
This paper is concerned with the following Kirchhoff-type equations $$ \left\{ \begin{array}{ll} \displaystyle -\big(\varepsilon^{2}a+\varepsilon b\int_{\mathbb{R}^{3}}|\nabla u|^{2}\mathrm{d}x\big)\Delta u + V(x)u+\mu\phi |u|^{p-2}u=f(x,u), &\quad \mbox{ in }\mathbb{R}^{3},\(-\Delta)^{\frac{\alpha}{2}} \phi=\mu|u|^{p},~u>0, &\quad \mbox{ in }\mathbb{R}^{3},\\end{array} \right. $$ where $f(x,u)=\lambda K(x)|u|^{q-2}u+Q(x)|u|^{4}u$, $a>0,~b,~\mu\geq0$ are constants, $\alpha\in(0,3)$, $p\in[2,3),~q\in[2p,6)$ and $\varepsilon,~\lambda>0$ are parameters. Under some mild conditions on $V(x),~K(x)$ and $Q(x)$, we prove that the above system possesses a ground state solution $u_{\varepsilon}$ with exponential decay at infinity for $\lambda>0$ and $\varepsilon$ small enough. Furthermore, $u_{\varepsilon}$ concentrates around a global minimum point of $V(x)$ as $\varepsilon\rightarrow0$. The methods used here are based on minimax theorems and the concentration-compactness principle of Lions. Our results generalize and improve those in Liu and Guo (Z Angew Math Phys 66: 747-769, 2015), Zhao and Zhao (Nonlinear Anal 70: 2150-2164, 2009) and some other related literature.  相似文献   

20.
We study the following mean field equation$$\Delta_{g}u+\rho\left(\frac{e^{u}}{\int_{\mathbb{S}^{2}}e^{u}d\mu}-\frac{1}{4\pi}\right)=0\ \ \mbox{in}\ \ \mathbb{S}^{2},$$where $\rho$ is a real parameter. We obtain the existence of multiple axially asymmetric solutions bifurcating from $u=0$ at the values $\rho=4n(n+1)\pi$ for any odd integer $n\geq3$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号