首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
证明了在函数f(x)为乘凸的条件下,一类对称函数∑_n~rf(x))=∑_1≤i_1i_2…i_r≤nf(∏ry=1x1/rij)是Schur m-指数凸的,这里x∈R_+~n,r∈N~+={1,2,…,n}.此结果包含了近期一些已有的结果.应用该结果,获得了一些特殊的对称函数的Schur m-指数凸性.  相似文献   

2.
本文用一种新方法研究两类对称函数的Schur凸性.首先,对x=(x1,...,xn)∈(-∞,1)n∪(1,+∞)n和r∈{1,2,...,n},讨论Guan(2007)定义的对称函数Fn(x,r)=Fn(x1,x2,...,xn;r)=∑1≤i1≤i2≤···≤ir≤n r∏j=1xij/(1-xij)的Schur凸性,其中i1,i2,...,in为正整数;推广褚玉明等人(2009)的主要结果,因而用新方法推广并解决Guan(2007)提出的一个公开问题.然后,对x=(x1,...,xn)∈(-∞,1)n∪(1,+∞)n和r∈{1,2,...,n},研究本文定义的对称函数Gn(x,r)=Gn(x1,x2,...,xn;r)=∑1≤i1≤i2≤···≤ir≤n(r∏j=1xij/(1-xij))1/r的Schur凸性、Schur乘性凸性和Schur调和凸性,其中i1,i2,...,in为正整数.作为应用,用Schur凸函数自变量的双射变换得到其他几类对称函数的Schur凸性,用控制理论建立一些不等式,特别地,由此给出Sharpiro不等式和Ky Fan不等式一个共同的推广,导出Safta猜想在高维空间的推广.  相似文献   

3.
对x=(x1,x2,…,xn)∈R+n及r∈{1,2,…,n},定义了对称函数Fn(x,r)=Fn(x1,x2,…,xn;r)=∑1≤i12r≤n(∏(j=1 xij/1+xij1/r,其中i1,i2,…,in是正整数.本文讨论了Fn(x,r)的Schur凸性、Schur几何凸性和Schur调和凸性,并借助于控制理论建立了若干不等式.  相似文献   

4.
为了研究线性核Toader平均Mr(a,b)在R_(++)2上的Schur凸性和Schur几何凸性,利用控制不等式的相关理论得到结论:当r≥1时,M_r(a,b)在R_(++)2上的Schur凸性和Schur几何凸性,利用控制不等式的相关理论得到结论:当r≥1时,M_r(a,b)在R_(++)2上是Schur凸函数;当r≤1时,Mr(a,b)在R_(++)2上是Schur凸函数;当r≤1时,Mr(a,b)在R_(++)2上是Schur凹函数;当r≥1/2时,M_r(a,b)在R_(++)2上是Schur凹函数;当r≥1/2时,M_r(a,b)在R_(++)2上是Schur几何凸函数.最后,依据M_r(a,b)的Schur凸性和Schur几何凸性建立了新的不等式.  相似文献   

5.
定义了一完全对称函数并研究该称函数的Schur凸性,Schur乘性凸性及Schur调和凸性,作为应用探讨了与其相关的一些不等式.  相似文献   

6.
通过判断相关函数的Schur凸性、Schur几何凸性和Schur调和凸性,证明并推广了一类条件不等式,并据此建立了某些单形不等式.  相似文献   

7.
In this article,we prove that the symmetric function F_n~*(x,r)=i_1+i_ 2_++i_n =r(x_1~(i~1)x_2~(i~2)... x_n~(i~n)1/r is Schur harmonic convex for x∈R~n_+and r∈N={1,2,3,...}.As its applications,some analytic inequalities are established.  相似文献   

8.
讨论了二元Lehme平均Lp(a,b)关于变量(a,b)在R+2+上的Schur凸性和Schur几何凸性,并建立了相应的不等式.  相似文献   

9.
对x = (x1, x2,···, xn) ∈ (0,1)n 和 r ∈ {1, 2,···, n} 定义对称函数 Fn(x, r) = Fn(x1, x2,···, xn; r) =∏1≤i1j=1r(1+xi3/1- xi3)1/r, 其中i1, i2, ···, ir 是整数. 该文证明了Fn(x, r) 是(0,1)n 上的Schur凸、Schur乘性凸和Schur调和凸函数. 作为应用,利用控制理论建立了若干不等式.  相似文献   

10.
讨论了两个三角平均的Schur凸性,进而得到一些新的不等式  相似文献   

11.
In this paper, we investigate the Hyers–Ulam stability of the following quartic equation $$\begin{array}{ll} {\sum\limits^{n}_{k=2}}\left({\sum\limits^{k}_{i_{1}=2}}{\sum\limits^{k+1}_{i_{2}=i_{1}+1}} \ldots {\sum\limits^{n}_{i_{n-k+1}=i_{n-k}+1}}\right)\\ \quad\times f \left({\sum\limits^{n}_{i=1,i \neq i_{1},\ldots,i_{n-k+1}}} x_{i}-{\sum\limits^{n-k+1}_{r=1}}x_{i_{r}}\right) + f \left({\sum\limits^{n}_{i=1}}x_{i}\right)\\ \quad-2^{n-2}{\sum\limits^{}_{1 \leq{i} \leq{j} \leq{n}}}(f(x_{i} + x_{j}){+f(x_{i} - x_{j})){+2^{n-5}(n - 2){\sum\limits^{n}_{i=1}}f(2x_{i})}} = \theta \end{array} $$ $({n \in \mathbb{N}, n \geq 3})$ in β-homogeneous F-spaces.  相似文献   

12.
在有界星形圆形域上定义了一个新的星形映射子族, 它包含了$\alpha$阶星形映射族和$\alpha$阶强星形映射族作为两个特殊子类. 给出了此类星形映射子族的增长定理和掩盖定理. 另外, 还证明了Reinhardt域$\Omega_{n,p_{2},\cdots,p_{n}}$上此星形映射子族在Roper-Suffridge算子 \begin{align*} F(z)=\Big(f(z_{1}),\Big(\frac{f(z_{1})}{z_{1}}\Big)^{\beta_{2}}(f'(z_{1}))^{\gamma_{2}}z_{2},\cdots, \Big(\frac{f(z_{1})}{z_{1}}\Big)^{\beta_{n}}(f'(z_{1}))^{\gamma_{n}}z_{n}\Big)' \end{align*} 作用下保持不变, 其中 $\Omega_{n,p_{2},\cdots,p_{n}}=\{z\in {\mathbb{C}}^{n}:|z_1|^2+|z_2|^{p_2}+\cdots + |z_n|^{p_n}<1\}$, $p_{j}\geq1$, $\beta_{j}\in$ $[0, 1]$, $\gamma_{j}\in[0, \frac{1}{p_{j}}]$满足$\beta_{j}+\gamma_{j}\leq1$, 所取的单值解析分支使得 $\big({\frac{f(z_{1})}{z_{1}}}\big)^{\beta_{j}}\big|_{z_{1}=0}=1$, $(f'(z_{1}))^{\gamma_{j}}\mid_{{z_{1}=0}}=1$, $j=2,\cdots,n$. 这些结果不仅包含了许多已有的结果, 而且得到了新的结论.  相似文献   

13.
For x = (x 1, x 2, ..., x n ) ∈ ℝ+ n , the symmetric function ψ n (x, r) is defined by $\psi _n (x,r) = \psi _n \left( {x_1 ,x_2 , \cdots ,x_n ;r} \right) = \sum\limits_{1 \leqslant i_1 < i_2 \cdots < i_r \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 + x_{i_j } }} {{x_{i_j } }}} } ,$\psi _n (x,r) = \psi _n \left( {x_1 ,x_2 , \cdots ,x_n ;r} \right) = \sum\limits_{1 \leqslant i_1 < i_2 \cdots < i_r \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 + x_{i_j } }} {{x_{i_j } }}} } ,  相似文献   

14.
设k和r是满足k≥3及r≥Ψ(k)+1的正整数,这里当3≤k≤4时,Ψ(k)=2~(k-1);而当k≥5时,Ψ(k)=1/2k(k+1).假定δ和ε是给定的足够小的正数,λ_1,λ_2,…,λ_(r+1)是不全同号且两两之比不全为有理数的非零实数.对于任意实数η与0σ2~(1-2k)/r-1,证明了:存在一个正数序列X→+∞,使得不等式|λ_1p_1~k+λ_2p_2~k+···+λ_rp_r~k+λ_(r+1)p_(r+1)+η|(max(1≤j≤r+1)p_j)~(-σ)有》■X~(■-(2~(1-2k))/(r-1)+ε组素数解(p_1,p_2,…,p_(r+1)),这里(δX)~(1/k)≤p_j≤X~(1/k)(1≤j≤r)及δX≤p_(r+1)≤X.这改进了之前的结果.  相似文献   

15.
In this paper, we establish two families of approximations for the gamma function: $$ \begin{array}{lll} {\varGamma}(x+1)&=\sqrt{2\pi x}{\left({\frac{x+a}{{\mathrm{e}}}}\right)}^x {\left({\frac{x+a}{x-a}}\right)}^{-\frac{x}{2}+\frac{1}{4}} {\left({\frac{x+b}{x-b}}\right)}^{\sum\limits_{k=0}^m\frac{{\beta}_k}{x^{2k}}+O{{\left(\frac{1}{x^{2m+2}}\right)}}},\\ {\varGamma}(x+1)&=\sqrt{2\pi x}\cdot(x+a)^{\frac{x}{2}+\frac{1}{4}}(x-a)^{\frac{x}{2}-\frac{1}{4}} {\left({\frac{x-1}{x+1}}\right)}^{\frac{x^2}{2}}\\ &\quad\times {\left({\frac{x-c}{x+c}}\right)}^{\sum\limits_{k=0}^m\frac{{\gamma}_k}{x^{2k}}+O{\left({\frac{1}{x^{2m+2}}}\right)}}, \end{array}$$ where the constants ${\beta }_k$ and ${\gamma }_k$ can be determined by recurrences, and $a$ , $b$ , $c$ are parameters. Numerical comparison shows that our results are more accurate than Stieltjes, Luschny and Nemes’ formulae, which, to our knowledge, are better than other approximations in the literature.  相似文献   

16.
In this paper, we study the asymptotic behavior of solutions to a quasilinear fully parabolic chemotaxis system with indirect signal production and logistic sourceunder homogeneous Neumann boundary conditions in a smooth bounded domain $Ω⊂\mathbb{R}^n$ $(n ≥1)$, where $b ≥0$, $γ ≥1$, $a_i ≥1$, $µ$, $b_i >0$ $(i =1,2)$, $D$, $S∈ C^2([0,∞))$ fulfilling $D(s) ≥ a_0(s+1)^{−α}$, $0 ≤ S(s) ≤ b_0(s+1)^β$ for all $s ≥ 0,$ where $a_0,b_0 > 0$ and $α,β ∈ \mathbb{R}$ are constants. The purpose of this paper is to prove that if $b ≥ 0$ and $µ > 0$ sufficiently large, the globally bounded solution $(u,v,w)$ with nonnegative initial data $(u_0,v_0,w_0)$ satisfies $$\Big\| u(·,t)− \Big(\frac{b}{µ}\Big)^{\frac{1}{γ}}\Big\|_{L^∞(Ω)}+\Big\| v(·,t)−\frac{b_1b_2}{a_1a_2}\Big(\frac{b}{µ}\Big)^{\frac{1}{γ}}\Big\| _{L^∞(Ω)} +\Big\| w(·,t)−\frac{b_2}{a_2}\Big(\frac{b}{µ}\Big)^{\frac{1}{γ}}\Big\| _{L^∞(Ω)}→0$$ as $t→∞$.  相似文献   

17.
Let Fq be a finite field with q = pf elements,where p is an odd prime.Let N(a1x12 + ···+anxn2 = bx1 ···xs) denote the number of solutions(x1,...,xn) of the equation a1x12 +···+ anxn2 = bx1 ···xs in Fnq,where n 5,s n,and ai ∈ F*q,b ∈ F*q.In this paper,we solve the problem which the present authors mentioned in an earlier paper,and obtain a reduction formula for the number of solutions of equation a1x21 + ··· + anxn2 = bx1 ···xs,where n 5,3 ≤ s n,under a certain restriction on coefficients.We also obtain an explicit formula for the number of solutions of equation a1x21 + ··· + anxn2 = bx1 ···xn-1 in Fqn under a restriction on n and q.  相似文献   

18.
Let ∈ :N → R be a parameter function satisfying the condition ∈(k) + k + 1 > 0and let T∈ :(0,1] →(0,1] be a transformation defined by T∈(x) =-1 +(k + 1)x1 + k-k∈x for x ∈(1k + 1,1k].Under the algorithm T∈,every x ∈(0,1] is attached an expansion,called generalized continued fraction(GCF∈) expansion with parameters by Schweiger.Define the sequence {kn(x)}n≥1of the partial quotients of x by k1(x) = ∈1/x∈ and kn(x) = k1(Tn-1∈(x)) for every n ≥ 2.Under the restriction-k-1 < ∈(k) <-k,define the set of non-recurring GCF∈expansions as F∈= {x ∈(0,1] :kn+1(x) > kn(x) for infinitely many n}.It has been proved by Schweiger that F∈has Lebesgue measure 0.In the present paper,we strengthen this result by showing that{dim H F∈≥12,when ∈(k) =-k-1 + ρ for a constant 0 < ρ < 1;1s+2≤ dimHF∈≤1s,when ∈(k) =-k-1 +1ksfor any s ≥ 1where dim H denotes the Hausdorff dimension.  相似文献   

19.
This paper deals with the boundary value problems for regular function with valuesin a Clifford algebra: ()W=O, x∈R~n\Г, w~+(x)=G(x)W~-(x)+λf(x, W~+(x), W~-(x)), x∈Г; W~-(∞)=0,where Г is a Liapunov surface in R~n the differential operator ()=()/()x_1+()/()x_2+…+()/()x_ne_n, W(x) =∑_A, ()_AW_A(x) are unknown functions with values in a Clifford algebra ()_n Undersome hypotheses, it is proved that the linear baundary value problem (where λf(x, W~+(x),W~-(x)) =g(x)) has a unique solution and the nonlinear boundary value problem has atleast one solution.  相似文献   

20.
In this paper, we are concerned with the properties of positive solutions of the following nonlinear integral systems on the Heisenberg group $\mathbb{H}^n$, \begin{equation} \left\{\begin{array}{ll} u(x)=\int_{\mathbb{H}^n}\frac{v^{q}(y)w^{r}(y)}{|x^{-1}y|^\alpha|y|^\beta}\,dy,\\ v(x)=\int_{\mathbb{H}^n}\frac{u^{p}(y)w^{r}(y)}{|x^{-1}y|^\alpha|y|^\beta}\,dy,\\ w(x)=\int_{\mathbb{H}^n}\frac{u^{p}(y)v^{q}(y)}{|x^{-1}y|^\alpha|y|^\beta}\,dy,\\ \end{array}\right.\end{equation} for $x\in \mathbb{H}^n$, where $0<\alpha 1$ satisfying $\frac{1}{p+1} $+ $\frac{1}{q+1} + \frac{1}{r+1} = \frac{Q+α+β}{Q}.$ We show that positive solution triples $(u,v,w)\in L^{p+1}(\mathbb{H}^n)\times L^{q+1}(\mathbb{H}^n)\times L^{r+1}(\mathbb{H}^n)$ are bounded and they converge to zero when $|x|→∞.$  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号