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EXISTENCE AND CONCENTRATION RESULT
FOR KIRCHHOFF EQUATIONS WITH

CRITICAL EXPONENT AND HARTREE
NONLINEARITY

Guofeng Che1,† and Haibo Chen2

Abstract This paper is concerned with the following Kirchhoff-type equa-
tions

−
(
ε2a+ εb

∫
R3

|∇u|2dx
)
∆u+ V (x)u+ µϕ|u|p−2u = f(x, u), in R3,

(−∆)
α
2 ϕ = µ|u|p, u > 0, in R3,

where f(x, u) = λK(x)|u|q−2u + Q(x)|u|4u, a > 0, b, µ ≥ 0 are constants,
α ∈ (0, 3), p ∈ [2, 3), q ∈ [2p, 6) and ε, λ > 0 are parameters. Under some mild
conditions on V (x), K(x) and Q(x), we prove that the above system possesses
a ground state solution uε with exponential decay at infinity for λ > 0 and ε
small enough. Furthermore, uε concentrates around a global minimum point
of V (x) as ε → 0. The methods used here are based on minimax theorems
and the concentration-compactness principle of Lions. Our results generalize
and improve those in Liu and Guo (Z Angew Math Phys 66: 747-769, 2015),
Zhao and Zhao (Nonlinear Anal 70: 2150-2164, 2009) and some other related
literature.

Keywords Kirchhoff equations, critical Sobolev exponent, Hartree-type non-
linearity, concentration-compactness principle.
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1. Introduction
This paper deals with the existence and concentration of positive ground state
solutions to the following Kirchhoff-type equations:

−
(
ε2a+ εb

∫
R3

|∇u|2dx
)
∆u+ V (x)u+ µφ|u|p−2u = f(x, u), in R3,

(−∆)
α
2 φ = µ|u|p, u > 0, in R3,

(1.1)

where f(x, u) = λK(x)|u|q−2u+Q(x)|u|4u, a > 0, b, µ ≥ 0 are constants, α ∈ (0, 3),
p ∈ [2, 3), q ∈ [2p, 6) and ε, λ > 0 are parameters.
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When α = p = 2, b = 0 and ε = a = 1, system (1.1) becomes the following
classical Schrödinger-Poisson system:−∆u+ V (x)u+ µφu = λK(x)|u|q−2u+Q(x)|u|4u, in R3,

−∆φ = µu2, in R3,
(1.2)

which describes a charged wave interacting with its own electrostatic field [4]. In
the past decades, with the aid of variational methods, there are lots of results on
elliptic equations, see [2–4, 6, 8–11, 15, 17, 18, 26–28, 30, 31, 34] and the references
therein. For instance, Sun et al. [31] obtained the existence and concentration
of nontrivial solutions for system (1.2) with q ∈ (3, 4), K(x) ≡ 1 and Q(x) ≡
0. By using the variant fountain theorem established by Zou [37], Xu et al. [34]
established the existence of multiple negative energy solutions for system (1.2) when
λK(x)|u|q−2u+Q(x)|u|4u and µ are replaced byH(x)f(x, u) andK(x), respectively.

When µ = 0, system (1.1) is reduced to the following Kirchhoff-type equation:

−(ε2a+ εb

∫
R3

|∇u|2dx)∆u+ V (x)u = λK(x)|u|q−2u+Q(x)|u|4u, in R3, (1.3)

which was related to the stationary analogue of the following equation:

ρ
∂2u

∂2t
− (

P0

h
+

E

2L

∫ L

0

|∂u
∂x

|2dx)∂
2u

∂2x
= 0. (1.4)

Problem (1.4) arises in many mathematical physics context, which was presented
by Kirchhoff [19] as an extension of the classical D’Alembert wave equation for
free vibrations of elastic strings. Recently many attentions have been paid to Eq.
(1.3), especially on the existence of positive solutions, ground state solutions, sign-
changing solutions and multiple solutions, see [16, 24, 25, 29, 35] and the references
therein. For example, Liu et al. [24] investigated the existence of positive ground
state solution uε for Eq. (1.3) with exponential decay at infinity for λ > 0 and ε
small enough. Moreover, they assumed that V (x) satisfies the following assumption:
(V1) V ∈ C(R3,R+) and V∞ := lim inf

n→∞
V (x) > V0 = inf

x∈R3
V (x) > 0.

He et al. [13] obtained the multiplicity and concentration of nontrivial solutions for
problem (1.3) when the nonlinearity is f(u)+u5 and the potential V (x) is a locally
Hölder continuous function which satisfies the condition (V2) as follows:
(V2) V (x) ≥ V0 > 0 for all x ∈ R3 and inf

x∈B
V (x) < min

x∈∂B
V (x) for some open and

bounded set B ⊂ RN .
Very recently, Li et al. [21] studied the following more generalized Kirchhoff-type

system:
−(a+ b

∫
R3

|∇u|2dx)∆u+ λV (x)u+ φ|u|p−2u = f(u), in R3,

(−∆)
α
2 φ = l|u|p, in R3,

(1.5)

where a > 0, b, l ≥ 0, α ∈ (0, 3), p ∈ [2, 3 + 2α) and λ > 0 is a parameter. By the
minimization argument on the sign-changing Nehari manifold and a quantitative
deformation lemma, they proved system (1.5) has a sign-changing solution. More-
over, the concentration behaviors of sign-changing solutions were obtained when the
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potential function tends to infinity. In addition, note that the second equation in
system (1.5) is a fractional differential equation and φ = I ∗ |u|p, where I : R3 → R
is the Riesz potential defined by I(x) = lΓ((3−α)/2)

Γ(α/2)π
3
2 2α

1
|x|3−α , x ∈ R3 \ {0} and ∗ is

a notation for the convolution of two functions in R3. It is easy to see φ|u|p−2u
is a Hartree-type nonlinearity and when α = p = 2, system (1.5) reduces to the
Kirchhoff-Schrödinger-Poisson system.

Inspired by the above works, in the present paper, we will consider the existence
and concentration of positive ground state solutions for system (1.1). As far as we
know, it seems that there is almost no work on the existence and concentration of
positive ground state solution for system (1.1), which is just our aim.

In this paper, in addition to the condition (V1), we assume that functions
V (x), K(x) and Q(x) satisfy the following hypotheses:
(H1) K ∈ C(R3,R+), lim

|x|→∞
K(x) = K∞ ∈ (0,∞) and K(x) ≥ K∞ for x ∈ R3;

(H2) Q ∈ C(R3,R+), lim
|x|→∞

Q(x) = Q∞ ∈ (0,∞) and Q(x) ≥ Q∞ for x ∈ R3;

(H3) there exist ν > 0 and β > 0 such that Q(x)−Q(x∗) ≤ ν|x−x0|β for |x−x∗| < δ,
where β ∈ [1, 3) and Q(x∗) = max

x∈R3
Q(x);

(H4) Λ ∩ Λ1 ∩ Λ2 ̸= ∅, where Λ =
{
x ∈ R3 : V (x) = V0

}
, Λ1 =

{
x ∈ R3 : K(x) =

K0 := max
x∈R3

K(x)
}

and Λ2 =
{
x ∈ R3 : Q(x) = Q0 := max

x∈R3
Q(x)

}
.

It is obvious that Q(x) and K(x) are bounded continuous functions. Similar
hypotheses have been introduced by Che et al. [7] and Liu et al. [24] in their studies
of nonlinear quasilinear Schrödinger equations and Kirchhoff equations. Without
loss of generality, we may assume that 0 ∈ Λ ∩ Λ1 ∩ Λ2.

Our main results are the following.

Theorem 1.1. Suppose that conditions (V1) and (H1)− (H4) hold. Then we have
the following results.
(i) If p ∈ [2, 3+α

2 ) and q ∈ (4, 6), then there exists ε0 > 0 such that problem (1.1)
has a positive solution uε for any λ > 0 and ε ∈ (0, ε0).
(ii) If 3+α

2 ≤ p < 3 or q = 4, then there exits λ0 > 0 and ε0 > 0 such that problem
(1.1) has a positive solution uε for any and λ > λ0 and ε ∈ (0, ε0).

Theorem 1.2. Let uε be the positive solution obtained in Theorem 1.1, then uε
concentrates around a point xε in R3 such that, up to a subsequence, xε → x0 as
ε→ 0 and ωε(x) = uε(εx+ xε) converges to a position ground state solution of

−
(
a+ b

∫
R3

|∇u|2dx
)
∆u+ V0u+ µφ|u|p−2u =

= λK0|u|q−2u+Q0|u|4u, in R3,

(−∆)
α
2 φ = µ|u|p, u > 0, in R3.

(1.7)

Remark 1.1. It is easy to see that the Schrödinger equation, the Kirchhoff equa-
tion and the Schrödinger-Poisson equation are all the special situations of prob-
lem (1.1). Specially, problem (1.1) becomes the Kirchhoff equation when µ = 0,
the Schrödinger-Poisson equation when b = 0 and α = p = 2, and the general
Schrödinger equation when b = µ = 0. Therefore, the problem (1.1) unifies the
above three kinds of equations and our results also cover these cases.
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Remark 1.2. From the results in He et al. [14] and Wang et al. [32], we know that
the maximum point xε of the positive solution uε satisfies lim

ε→0+
xε = y ∈ Λ. While,

in this paper, under our assumptions, we have the furthermore result: lim
ε→0+

xε =

y ∈ Λ∩Λ1∩Λ2 due to the appearance of the nonnegative functions K(x) and Q(x).
Hence, our results not only unify but also generalize the previous results.

The main obstacles to deal with the existence of positive ground state solutions
for problem (1.1) lie in two aspects. Firstly, the appearance of the nonlocal term
(
∫
R3 |∇u|2dx)∆u makes it difficult to verify the (PS) condition. Precisely, for any

(PS) sequences {un}, if un ⇀ u in H1(R3), we do not know whether there holds∫
R3

|∇un|2dx
∫
R3

∇un∇vdx→
∫
R3

|∇u|2dx
∫
R3

∇u∇vdx, ∀ v ∈ H1(R3).

Secondly, the difficulty is caused by the lack of compactness due to the unboundness
domain R3 and the nonlinearity with the critical Sobolev growth. In particular, the
nonlinear term is nonautonomous, which makes it much more complicated to recover
the compactness. To deal with the difficulty caused by the noncompactness, some
arguments are in order. Firstly, a standard method is adopted to show that the
energy functional possesses a mountain pass energy level. Secondly, we borrow an
idea from Brezis et al. [5] to show that mountain pass energy level is less than some
critical level (Lemma 3.4) and is even less than the least energy level of the limit
problem of (Lemma 3.6). At last, by employing the concentration-compactness
principle of Lions [22, 23], we prove that the Palais-Smale condition holds at the
mountain pass energy level. Hence, the mountain pass critical value exists.

Notation. Throughout this paper, we shall denote by | · |r, 1 ≤ r ≤ +∞, the Lr-
norm and C various positive generic constants, which may vary from line to line.
S = inf

u∈D1,2(R3)

∥u∥2
D1,2

|u|26
is the best Sobolev constant from the embedding of D1,2(R3)

into L6(R3). Also if we take a subsequence of a sequence {un}, we shall denote it
again by {un}.

The remainder of this paper is as follows. In Section 2, some preliminary results
are presented. In Section 3, by verifying the mountain pass value is under the
energy level, we prove the existence of a positive ground state solution. Section 4
is devoted to the concentration of the positive ground state solution.

2. Preliminaries
In this section, we outline the variational framework for system (1.1) and give some
preliminary lemmas.

Let H1(R3) be the usual Hilbert space with the inner product and the norm

⟨u, v⟩H1 =

∫
R3

(
∇u∇v + uv

)
dx, ∥u∥H1 = ⟨u, v⟩

1
2

H1 ,

and denote the norm of D1,2(R3) by

∥u∥D1,2 =

(∫
R3

|∇u|2dx
) 1

2

.
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Make the change of variable εz = x, then we can rewrite problem (1.1) as
−
(
a+ b

∫
R3

|∇u|2dx
)
∆u+ V (εx)u+ µφ|u|p−2u

= λK(εx)|u|q−2u+Q(εx)|u|4u, in R3,

(−∆)
α
2 φ = µ|u|p, u > 0, in R3.

(2.1)

For any ε > 0, let

Eε =
{
u ∈ H1(R3)

∣∣ ∫
R3

V (εx)u2dx <∞
}

with the inner product and the norm

⟨u, v⟩ε =
∫
R3

(
a∇u∇v + V (εx)uv

)
dx and ∥u∥2ε = ⟨u, u⟩ε.

For any u ∈ Eε, let

Iε(u) =
1

2
∥u∥2ε +

b

4

( ∫
R3

|∇u|2dx
)2

+
µ

2p

∫
R3

(I ∗ |u|p)|u|pdx

− λ

q

∫
R3

K(εx)|u|qdx− 1

6

∫
R3

Q(εx)|u|6dx.
(2.2)

Then I is well defined and of class C1(Eε,R) (see [24]) and that

〈
I ′ε(u), v

〉
= ⟨u, v⟩ε + b

∫
R3

|∇u|2dx
∫
R3

∇u∇vdx

+ µ

∫
R3

(I ∗ |u|p)|u|p−2uvdx−
∫
R3

λK(εx)|u|q−2uvdx

−
∫
R3

Q(εx)|u|4uvdx.

(2.3)

Define
Nε := {u ∈ Eε \ {0} : ⟨I ′ε(u), u⟩ = 0}.

Then Nε is a Nehari manifold associated to Iε. In view of the Implicit Function
Theorem, we know that Nε is a manifold of C1. Furthermore, it is not difficult to
verify that Iε is bounded from below on Nε. Thus we can consider the following
minimization problem:

c∗ε := inf
u∈Nε

Iε(u).

Next we state some properties of Iε, Nε and c∗ε. By a standard argument as [18],
we have the following lemma.

Lemma 2.1. Suppose that conditions (V1) and (H1 −H4) hold, if q ∈ [4, 6), then
we have the following results.
(i) If {un} is a (PS)c sequence in Eε, then there exists u ∈ Eε such that un ⇀ u
and I ′ε(u) = 0.
(ii) For every u ∈ Eε \ {0}, there exists a unique tu > 0 such that tuu ∈ Eε and
Iε(tuu) = max

t≥0
I(tu).
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(iii) For any u ∈ Nε, there exists C1 > 0 such that ∥u∥ε ≥ C1.
(iv) Let {un} ⊂ Eε be a sequence satisfying ⟨I ′ε(un), un⟩ → 0 and

∫
R3

(
K(εx)|un|q+

Q(εx)|un|6
)
dx → η > 0 as n → ∞, where η is some positive constant, then there

exists tn > 0 such that ⟨I ′ε(tnun), tnun⟩ = 0 and tn → 1 as n→ ∞.

In a standard way (see [12]), one can check that the energy functional Iε satisfies
the mountain pass geometry.

Lemma 2.2. The functional Iε possesses the following properties:
(i) there exist α0, ρ > 0 such that Iε(u) ≥ α0 for ∥u∥ε = ρ.
(ii) there exists e ∈ Eε such that Iε(e) < 0.

It follows from Lemma 2.2 and the Mountain Pass Theorem [12] that there exists
a (PS)cε sequence {un} ⊂ Eε such that Iε(un) → cε and I ′ε(un) → 0 as n → ∞,
where cε is equal to the minimax level value inf

γ∈Γ
max
t≥0

Iε(γ(t)), where

Γ =
{
γ ∈ C1([0, 1], Eε) : Iε(γ(0)) = 0, Iε(γ(1)) < 0

}
.

Define c∗∗ε = inf
u∈Eε\{0}

max
t≥0

Iε(tu), then similar to Theorem 4.2 in [33], we can obtain

cε = c∗ε = c∗∗ε . (2.4)

Here, we need say something to explain the relation (2.4). In fact, from Lemma
2.1(ii) that c∗ε = c∗∗ε . Observe that for any u ∈ Eε \ {0}, there exits some t0 > 0
such that Iε(t0u) < 0. Define a path γ : [0, 1] → Eε by γ(t) = tt0u. Obviously,
γ ∈ Γ and consequently, cε ≤ c∗∗ε . Analogous to the arguments in [1,33], we obatain
that cε ≥ c∗∗ε . Thus (2.4) holds. □

In this paper, we shall make use of the Hardy-Littlewood-Sobolev inequality
from [21].

Lemma 2.3 (Hardy-Littlewood-Sobolev inequality). Let r, s ∈ (0,∞) and µ ∈
(0, N) with 1

r + µ
N + 1

s = 2. Then there exists a sharp constant C(r,N, µ, s) such
that for all f ∈ Lr(RN ) and g ∈ Ls(RN ),∫

RN

∫
RN

f(x)g(y)

|x− y|µ
dxdy ≤ C(r,N, µ, s)|f |r|g|s.

The sharp constant satisfies

C(r,N, µ, s) ≤ N

N − µ

1

rs
α(N)

µ
N

[( µ/N

1− 1/r

)µ/N
+

( µ/N

1− 1/s

)µ/N]
,

where α(N) is the volume of unit sphere in RN . If r = s = 2N/(2N − µ), then

C(N,µ) = π
µ
2
Γ(N/2− µ/2)

Γ(N − µ/2)

[Γ(N/2)
Γ(N)

]−1+µ/N
.

Set

D(u) =

∫
R3

(
I ∗ |u|p

)
|u|pdx =

µΓ((3− α)/2)

Γ(α/2)π
3
2 2α

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|3−α
dxdy.

Then from Lemma 2.3, we have the estimate of D(u) as follows:

|D(u)| ≤ C(α)

(∫
R3

|u|
6p

3+α dx

) 3+α
3

= C(α)|u|2p6p
3+α

, (2.5)
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where 6p
3+α ∈ (2, 6) since α ∈ (0, 3) and p ∈ [2, 3). Since Eε ↪→ H1(R3) and

H1(R3) ↪→ Lr(R3), r ∈ [2, 6] are continuous, then D(u) is well defined in Eε.
Furthermore, similar to the proof of Lemma 2.3 in [36], we can get that D(u) ∈
C1(Eε,R).

Then we have the following Brézis-Lieb type Lemma for the nonlocal term D(u).

Lemma 2.4. Let α ∈ (0, 3), p ∈ [2, 3+α), if {un} is a bounded sequence such that
un → u almost everywhere in R3 as n→ ∞, then the following hold.

(i) D(un − u) = D(un)−D(u) + o(1);
(ii) D′(un − u) = D′(un)−D′(u) + o(1).

Proof. The proof is analogous to Lemma 3.3 in [16], we omit it here.
As we shall see, it is important to compare cε with the minimax level of the

following limit problem:
−
(
a+ b

∫
R3

|∇u|2dx
)
∆u+ V∞u+ µφ|u|p−2u

= λK∞|u|q−2u+Q∞|u|4u, in R3,

(−∆)
α
2 φ = µ|u|p, u > 0, in R3.

(2.6)

The corresponding energy functional associated with problem (2.6) is defined by

I∞(u) =
1

2

∫
R3

(
a|∇u|2 + V∞u

2
)
dx+

b

4

( ∫
R3

|∇u|2dx
)2

+
µ

2p

∫
R3

(I ∗ |u|p)|u|pdx− λ

q

∫
R3

K∞ |u|qdx

− 1

6

∫
R3

Q∞|u|6dx.

(2.7)

Define

N∞ := {u ∈ H1(R3) \ {0} : ⟨I ′∞(u), u⟩ = 0} and c∞ := inf
u∈N∞

I∞(u).

In fact, it is obvious that c∞ and N∞ have some similar properties to those of cε
and Nε.

3. Existence of positive ground state

In this section, we are devoted to showing that cε is achieved and the minimizer is
a positive ground state solution to problem (1.1). In the following, we present some
lemmas, which are useful to prove our result. To provide a precise description for
the (PS) condition of Iε, we shall apply the well known concentration-compactness
principle of Lions.
Lemma 3.1 (see [22,23]). Let r > 0 and 2 ≤ q < 2∗. If {un} is bounded in H1(RN )
and

lim
n→∞

sup
y∈RN

∫
Br(y)

|un|q = 0.

then un → 0 in Ls(RN ) for 2 < s < 2∗, where 2∗ = (N − 2)/2, N ≥ 3 and
2∗ = ∞, N = 1, 2.
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Lemma 3.2 (see [22,23]). Let {ρn} be a sequence of nonnegative functions on RN

satisfying
∫
RN ρn(x)dx = l, where l > 0 is fixed. There exists a subsequence {ρn}

such that one of the following three possibilities holds:
(i) (Compactness) there exists yn ∈ RN such that for any ε > 0, there exists R > 0
such that ∫

BR(yn)

ρn(x)dx ≥ l − ε, n = 1, 2, ...

(ii) (Vanishing) for all R > 0, there holds

lim
n→∞

sup
y∈RN

∫
BR(y)

ρn(x)dx = 0.

(iii) (Dichotomy) there exists θ ∈ (0, l) and {yn} ⊂ RN such that for every ε > 0,
there exists n0 ≥ 1, for all r ≥ n0 and r′ ≥ r, there holds

lim sup
n→+∞

(∣∣θ − ∫
Br(yn)

ρn(x)dx
∣∣+ ∣∣(l − θ)−

∫
RN\Br′ (yn)

ρn(x)dx
∣∣) < ε.

Lemma 3.3. Suppose that conditions (V1) and (H1)−(H4) hold. If cε<min{c∞,Λ∗},

then Iε satisfies the (PS) condition for cε, where Λ∗ = abS3

4|Q|∞ +

(
b2S4+4aS|Q|∞

) 3
2

24|Q|2∞
+

b3S6

24|Q|2∞
.

Proof. Let {un} ⊂ Eε be a (PS)cε sequence with cε < min{c∞,Λ∗}, i.e.

Iε(un) → cε, I ′ε(un) → 0, as n→ ∞. (3.1)

Thus for n sufficiently large, we obtain

cε + 1 + ∥un∥ε ≥ Iε(un)−
1

2p
⟨I ′ε(un), un⟩

= (
1

2
− 1

2p
)∥un∥2ε + (

1

4
− 1

2p
)b

(∫
R3

|∇un|2dx
)2

+ (
1

2p
− 1

q
)λ

∫
R3

K(εx)|un|qdx+ (
1

2p
− 1

6
)

∫
R3

Q(εx)|un|6dx

≥ (
1

2
− 1

2p
)∥un∥2ε,

which implies that {un} is bounded in Eε. Set A = lim
n→∞

∫
R3 |∇un|2dx and

ρn(x) =
2(q − 2)a+ (q − 4)Ab

4q
|∇un|2 +

(q − 2)V (εx)

2q
|un|2

+
(q − 2p)

2pq
µ(I ∗ |un|p)|un|p +

(6− q)Q(εx)

6q
|un|6 ∈ L1(R3),

then ρn is bounded in L1(R3). Hence, by choosing a subsequence, we can assume
that

Ψ(un) := |ρn|1 → l, as n→ ∞.

Thus we derive l > 0, otherwise, Iε(un) → 0 as n → ∞, a contradiction. Next we
apply Lemma 3.2 to get the compactness of {ρn}.



Existence result for Kirchhoff equations 2129

If {ρn} vanishes, then there exists R > 0 such that

lim
n→∞

sup
y∈R3

∫
BR(y)

|un|2dx = 0.

It follows from Lemma 3.1 that un → 0 in Ls(R3), s ∈ (2, 6). It follows from (2.5)
that ∫

R3

(I ∗ |un|p)|un|pdx→ 0, as n→ ∞.

From (H1) and 4 ≤ q < 6, we derive

∫
R3

K(εx)|un|qdx ≤ |K|∞
∫
R3

|un|qdx→ 0, as n→ ∞.

Therefore

Iε(un) =
1

2
∥un∥2ε +

b

4

( ∫
R3

|∇un|2dx
)2 − 1

6

∫
R3

Q(εx)|un|6dx+ o(1),

and

⟨I ′ε(un), un⟩ = ∥un∥2ε + b
( ∫

R3

|∇un|2dx
)2 − ∫

R3

Q(εx)|un|6dx+ o(1).

Hence, we may assume that there exist li ≥ 0(i = 1, 2, 3) such that

∥un∥ε → l1, b
( ∫

R3

|∇un|2dx
)2 → l2,

∫
R3

Q(εx)|un|6dx→ l3, as n→ ∞,

thus l3 = l1 + l2. Moreover, it is obvious that l1 > 0 and then l2, l3 > 0. It follows
from (H2) and the Sobolev inequality that

a3
∫
R3

Q(εx)|un|6dx ≤ a3|Q|∞
(
S−1

∫
R3

|∇un|2dx
)3

≤ S−3|Q|∞∥un∥6ε, (3.2)

and

b

(∫
R3

Q(εx)|un|6dx
) 2

3

≤b|Q|
2
3∞

(
S−1

∫
R3

|∇un|2dx
)2

≤b|Q|
2
3∞S

−2
(∫

R3

|∇un|2dx
)2

.

(3.3)
In view of (3.2), (3.3) and l3 = l1 + l2, we obtain

l1 ≥ aS|Q|
−1
3∞ (l1 + l2)

1
3 and l2 ≥ bS2|Q|

−2
3∞ (l1 + l2)

2
3 .
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It follows from (3.1) and Lemma 3.1 in [24] that

cε + o(1) = Iε(un)−
1

6
⟨I ′ε(un), un⟩

=
1

3
∥un∥2ε +

b

12

(∫
R3

|∇un|2dx
)2

=
l1
3
+
l2
12

≥ 1

3

abS3 + a
√
b2S6 + 4a|Q|∞S3

2|Q|∞

+
1

12

(
b2S3

√
b2S6 + 4|Q|∞aS3 + b3S6 + 2ab|Q|∞S3

2|Q|2∞

)

=
ab

4|Q|∞
S3 +

(
b2S4 + 4aS|Q|∞

) 3
2

24|Q|2∞
+

b3S6

24|Q|2∞
:= Λ∗,

(3.4)

which is a contradiction with the definition of cε. Thus, vanishing does not occur.
Next, we prove that the dichotomy does not occur. Argue by contradiction that

there exist θ ∈ (0, l) and {yn} ⊂ R3 such that for every ε > 0, there exists Rε > 0
such that for any r > Rε and r′ > Rε, there holds

lim inf
n→∞

∫
Brn (yn)

ρn(x)dx ≥ θ − ε, lim inf
n→∞

∫
Bc

r′n
(yn)

ρn(x)dx ≥ (l − θ)− ε. (3.5)

Choose εn → 0, rn → ∞ and r′n = 4rn. Let ξ ∈ C(R+, [0, 1]) be a cut-off function
such that ξ(s) = 0 for s ≤ 1 or s ≥ 4, ξ(s) = 1 for 2 ≤ s ≤ 3 and |ξ′(s)| ≤ 2. Take
ξn = ξ(|x− yn|/rn), then from (3.5) and ⟨I ′ε(un), ξnun⟩ = o(1), we obtain∫

B3rn (yn)\B2rn (yn)

(
a|∇un|2 +A|∇un|2 + V (εx)|un|2 + (I ∗ |un|p)|un|p

)
dx

=

∫
B3rn (yn)\B2rn (yn)

(
K(εx)|un|q +Q(εx)|un|6

)
dx+ o(1) = o(1).

(3.6)
Take another cut-off function η : R+ → [0, 1] be a cut-off function satisfying η(s) ≡ 1
for s ≤ 2, η(s) ≡ 0 for s ≥ 3 and |η′(s)| ≤ 2. Define

vn(x) := η

(
x− yn
rn

)
un(x), ωn(x) :=

(
1− η

(x− yn
rn

))
un(x).

Then
lim inf
n→∞

Ψ(vn) ≥ θ and lim inf
n→∞

Ψ(ωn) ≥ l − θ. (3.7)

Thus from (3.6), we derive

l = lim
n→∞

Ψ(un) ≥ lim inf
n→∞

Ψ(vn) + lim inf
n→∞

Ψ(ωn) ≥ l.

Hence
lim
n→∞

Ψ(vn) = θ, lim
n→∞

Ψ(ωn) = l − θ. (3.8)
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It follows from (3.1) and (3.6) that

o(1) = ⟨I ′ε(un), un⟩ ≥ ⟨I ′ε(vn), vn⟩+ ⟨I ′ε(ωn), ωn⟩+ o(1). (3.9)

Next we will study the problem in two cases.
Case1. Up to a subsequence, we may assume that ⟨I ′ε(vn), vn⟩≤0 or ⟨I ′ε(ωn), ωn⟩

≤ 0. Without loss of generality, we assume that ⟨I ′ε(vn), vn⟩ ≤ 0, then

a

∫
R3

|∇vn|2dx+

∫
R3

V (εx)v2ndx+ b

(∫
R3

|∇vn|2dx
)2

+ µ

∫
R3

(I ∗ |vn|p)|vn|pdx− λ

∫
R3

K(εx)|vn|qdx

−
∫
R3

Q(εx)|vn|6dx ≤ 0.

(3.10)

From Lemma 2.1, we know that for each n ∈ N, there exists tn > 0 such that
tnvn ∈ Nε and ⟨I ′ε(tnvn), (tnvn)⟩ = 0, i.e.

at2n

∫
R3

|∇vn|2dx+ t2n

∫
R3

V (εx)v2ndx+ bt4n

(∫
R3

|∇vn|2dx
)2

− λtqn

∫
R3

K(εx)|vn|qdx+ µt2pn

∫
R3

(I ∗ |vn|p)|vn|pdx

− t6n

∫
R3

Q(εx)|vn|6dx = 0.

(3.11)

It follows from (3.10) and (3.11) that

(t2n − t2pn )∥un∥2ε + b(t4n − t2pn )

(∫
R3

|∇vn|2dx
)2

+ λ(t2pn − tqn)

∫
R3

K(εx)|vn|qdx

+ (t2pn − t6n)

∫
R3

Q(εx)|vn|6dx ≥ 0,

showing that tn ≤ 1 since 4 ≤ 2p ≤ q < 6. Therefore, by (2.2), (2.3) and (3.8), for
n large enough, we have

cε ≤ Iε(tnvn)−
1

q
⟨I ′ε(tnvn), tnvn⟩

= (
1

2
− 1

q
)t2n∥vn∥2ε + (

1

4
− 1

q
)t4nb

(∫
R3

|∇vn|2dx
)2

+ (
1

2p
− 1

q
)t2pn µ

∫
R3

(I ∗ |vn|p)|vn|pdx+ (
1

q
− 1

6
)t6n

∫
R3

Q(εx)|vn|6dx

≤ (
1

2
− 1

q
)∥vn∥2ε + (

1

4
− 1

q
)Ab

∫
R3

|∇vn|2dx

+ (
1

2p
− 1

q
)µ

∫
R3

(I ∗ |vn|p)|vn|pdx+ (
1

q
− 1

6
)

∫
R3

Q(εx)|vn|6dx

= Ψ(vn) → θ < cε,

which is a contradiction.



2132 G. Che & H. Chen

Case 2. Up to a subsequence, we may assume that ⟨I ′ε(vn), vn⟩ > 0 and
⟨I ′ε(ωn), ωn⟩ > 0. It follows from (3.9) that ⟨I ′ε(vn), vn⟩ → 0 and ⟨I ′ε(ωn), ωn⟩ → 0
as n→ ∞. It follows from (3.6) that

Iε(un) ≥ Iε(vn) + Iε(ωn) + o(1). (3.12)

If {yn} ⊂ R3 is bounded, we can get a contradiction by comparing Iε(ωn) and c∞.
Indeed∫

R3

(K(εx)−K∞)|ωn|qdx ≤ sup
|x−yn|≥rn

|K(εx)−K∞||ωn|qq → 0, as n→ ∞.

Similarly ∫
R3

(Q(εx)−Q∞)|ωn|6dx→ 0, as n→ ∞.

Furthermore, it is easy to check that∫
R3

(V (εx)− V∞)|ωn|2dx ≥ o(1).

Then

Iε(ωn) ≥ I∞(ωn) + o(1) and o(1) = ⟨I ′ε(ωn), ωn⟩ ≥ ⟨I ′∞(ωn), ωn⟩+ o(1). (3.13)

Hence, similar to the arguments as in Case 1 and Lemma 2.1, there are two positive
sequences {tn} and {sn} satisfying tn ≤ 1 and sn → 1 as n→ ∞, respectively, such
that tnωn ∈ N∞ and snωn ∈ Nε. Then

Iε(ωn) = Iε(ωn)−
1

2p
⟨I ′ε(ωn), ωn⟩+ o(1)

= (
1

2
− 1

2p
)∥ωn∥2ε + (

1

4
− 1

2p
)b

(∫
R3

|∇ωn|2dx
)2

+ (
1

2p
− 1

q
)λ

∫
R3

K(εx)|ωn|qdx+ (
1

2p
− 1

6
)

∫
R3

Q(εx)|ωn|6dx

≥ I∞(ωn)−
1

2p
⟨I ′∞(ωn), ωn⟩+ o(1)

≥ I∞(tnωn)−
1

2p
⟨I ′∞(tnωn), tnωn⟩+ o(1)

= I∞(tnωn) + o(1) ≥ c∞

and
Iε(vn) = Iε(snvn) + o(1) ≥ cε + o(1).

Thus, it follows from (3.12) that cε ≥ cε+c∞, which is a contradiction. If {yn} ⊂ R3

is unbounded, in a similar way, we can obtain a contradiction. Then the dichotomy
does not happen. Therefore, the sequence {ρn} is compact, i.e., there exists {yn} ⊂
R3 such that for any ε > 0, there exists R > 0 such that

∫
Bc

R(yn)
ρn(x)dx < ε, which

implies that ∫
Bc

R(yn)

(
V (εx)u2n + λK(εx)|un|q +Q(εx)|un|6

)
dx < ε,
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i.e., the sequences {V (εx)u2n + λK(εx)|un|q + Q(εx)|un|6} is also compact. Thus,
{yn} must be bounded. Otherwise∫

R3

(V (εx)− V∞)|un|2dx ≥ o(1),∫
R3

(K(εx)−K∞)|un|qdx =

∫
R3

(Q(εx)−Q∞)|un|6dx = o(1),

and then Iε(un) ≥ I∞(un) + o(1) and ⟨I ′∞(un), un⟩ ≤ ⟨I ′ε(un), un⟩ = o(1). By
similar arguments as in Case 1, there exists a sequence {tn} satisfying tn ≤ 1 such
that tnun ∈ N∞. Therefore

cε = Iε(un)−
1

2p
⟨I ′ε(un), un⟩+ o(1)

≥ I∞(un)−
1

2p
⟨I ′∞(un), un⟩+ o(1)

≥ I∞(tnun)−
1

2p
⟨I ′∞(tnun), tnun⟩+ o(1)

= I∞(tnun) + o(1) ≥ c∞,

which is a contradiction. Let un ⇀ u in Eε. Since {yn} is bounded, then it is easy
to see that un → u in Lq(R3). Set χn = un − u, it follows from Lemma 2.4 and
Brézis-Lieb Lemma [33] that

Iε(un)− Iε(u) =
b

4

[( ∫
R3

|∇χn|2dx
)2

+ 2

∫
R3

|∇χn|2dx
∫
R3

|∇u|2dx
]

+
1

2
∥χn∥2ε −

1

6

∫
R3

Q(εx)|χn|6dx+ o(1)

(3.14)

and

o(1) = ⟨I ′ε(un), un⟩ − ⟨I ′ε(u), u⟩

= ∥χn∥2ε + b

[( ∫
R3

|∇χn|2dx
)2

+ 2

∫
R3

|∇χn|2dx
∫
R3

|∇u|2dx
]

−
∫
R3

Q(εx)|χn|6dx+ o(1).

(3.15)

We may assume that there exist ai ≥ 0(i = 1, 2, 3) such that

∥χn∥2ε → a1, b

[( ∫
R3

|∇χn|2dx
)2

+ 2

∫
R3

|∇χn|2dx
∫
R3

|∇u|2dx
]
→ a2,

and ∫
R3

Q(εx)|χn|6dx→ a3

as n → ∞. Thus, a3 = a1 + a2. If a1 > 0, then a2, a3 > 0. In view of Iε(u) ≥ 0,
(3.14) and (3.15), we obtain

cε ≥
1

3
∥χn∥2ε +

b

12

[( ∫
R3

|∇χn|2dx
)2

+ 2

∫
R3

|∇χn|2dx
∫
R3

|∇u|2dx
]
+ o(1)

=
a1
3

+
a2
12

+ o(1).
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Similar to the proof of (3.4), we have cε ≥ Λ∗, which is a contradiction. Hence,
a1 = 0, i.e., ∥χn∥ε → 0, that is, un → u in Eε and Iε(u) = cε.

We introduce the function uε ∈ D1,2(R3) defined by

uε := C1
ε

1
4

(ε+ |x− x0|2)
1
2

,

where C1 is a normalizing constant and x0 is chosen such that K(x0) = max
x∈R3

K(x)

as in (H4). Define vε(x) = ψ(x−x0)uε, where ψ ∈ C∞
0 (B2r(0)) such that ψ(x) = 1

on Br(0) and 0 ≤ ψ(x) ≤ 1. For ε > 0 small enough, from [33], we have∫
R3

|∇vε|2dx = K1 +O(ε
1
2 ),

∫
R3

|vε|6dx = K2 +O(ε
3
2 ), (3.16)

∫
R3

|vε|sdx =


O(ε

s
4 ), s ∈ [2, 3),

O(ε
3
4 |lnε|), s = 3,

O(ε
6−s
4 ), s ∈ (3, 6),

(3.17)

where K1, K2 are positive constants and S = K1

K
1
3
2

. It follows from (3.16) and (3.17)

that ∫
R3 |∇vε|2dx∫
R3 |vε|6dx

= S +O(ε
1
2 ). (3.18)

Lemma 3.4. Suppose that the conditions (V1) and (H1)−(H4) hold. If 2 ≤ p < 3+α
2

and 4 < q < 6, then cε < Λ∗ = abS3

4|Q|∞ +

(
b2S4+4aS|Q|∞

) 3
2

24|Q|2∞
+ b3S6

24|Q|2∞
. Furthermore,

if 3+α
2 ≤ p < 3 or q = 4, the above inequality still holds provided that λ is large

enough.

Proof. It follows from Lemma 2.1 and (2.4) that cε ≤ max
t≥0

Iε(tvε). Define

g(t) :=
t2

2
∥vε∥2ε +

bt4

4

(∫
R3

|∇vε|2dx
)2

− t6

6

∫
R3

Q(x∗)|vε|6dx.

Then

Iε(tvε) = g(t) +
µt2p

2p

∫
R3

(I ∗ |vε|p)|vε|pdx− λtq

q

∫
R3

K(εx)|vε|qdx

+
t6

6

∫
R3

(
Q(x∗)−Q(εx)

)
|vε|6dx.

(3.19)

By a direct computation, we can obtain

g(t) ≤ abS3

4|Q|∞
+

(
b2S4 + 4aS|Q|∞

) 3
2

24|Q|2∞
+

b3S6

24|Q|2∞
+O(ε

1
2 ).

In view of (H3) and the arguments in [15], we obtain∫
R3

(
Q(x∗)−Q(εx)

)
|vε|6dx ≤ Cε

1
2 .
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For vε ∈ Eε, it follows from Lemma 2.1 that there exists tε > 0 such that tεvε ∈ Nε

and

cε ≤ Iε(tεvε) ≤
abS3

4|Q|∞
+

(
b2S4 + 4aS|Q|∞

) 3
2

24|Q|2∞
+

b3S6

24|Q|2∞
+O(ε

1
2 )

+ C1ε
1
2 + C2

(∫
R3

|vε|
6p

3+α dx

) 3+α
3

− C3λ

∫
R3

|vε|qdx,

(3.20)

where Ci (i = 1, 2, 3) are positive constants independent of ε. Thus, in order to
complete the proof, it suffices to prove that

lim
ε→0

1

ε
1
2

[(∫
R3

|vε|
6p

3+α dx

) 3+α
3

− λ

∫
R3

|vε|qdx
]
= −∞. (3.21)

Indeed, since p ∈ [2, 3) and q ∈ [4, 6), then from (3.17), we have the following
estimations as ε→ 0:

|vε|2p6p
3+α

− λ

∫
R3

|vε|qdx =


−C4λε

6−q
4 + C5ε, if 2 ≤ p <

3 + α

2
,

−C4λε
6−q
4 + C5ε

p
2 |lnε|, if p = 3+α

2 ,

−C4λε
6−q
4 + C5ε

3+α−p
2 , if 3+α

2 < p < 3,

(3.22)

where Ci (i = 4, 5) are positive constants independent of ε. If 2 ≤ p < 3+α
2 and

q ∈ (4, 6), (3.21) follows from (3.22) for any λ > 0. If 3+α
2 ≤ p < 3 or q = 4, in

the above inequality, one can sress the parameter by choosing λ = ε−ν , ν > 0, to
obtain (3.21). The proof is complete.

Lemma 3.5. Suppose that conditions (V1) and (H1)−(H4) hold. If q ∈ (4, 6), then
c∞ is achieved in H1(R3). If q = 4, then c∞ is achieved in H1(R3) provided that λ
is large enough.

Proof. Similar to Lemma 2.2, we can check that I∞ possesses the mountain pass
geometry. Define

Θ =
{
γ ∈ C1([0, 1],H1(R3)) : I∞(γ(0)) = 0, I∞(γ(1)) < 0

}
,

and
c∗∞ = inf

γ∈Θ
max
t∈[0,1]

I∞(γ(t)), c∗∗∞ = inf
u∈H1(R3)\{0}

max
t≥0

I∞(tu).

Similar to the proof of (2.4), we have

c∞ = c∗∞ = c∗∗∞. (3.23)

Consequently, it follows from the Ekeland’s variational principle [12] that there
exists a sequence {un} ⊂ H1(R3) such that

I∞(un) → c∞, I ′∞(un) → 0, as n→ ∞. (3.24)

By a standard argument, we can prove that {un} is bounded in H1(R3). Define
ωn(x) := un(x+ yn), where xn ∈ R3. We claim that there exists xn ∈ R3 such that
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ωn ⇀ ω ̸= 0 in H1(R3). Argue by contradiction that for any yn ∈ R3, ωn ⇀ 0 in
H1(R3). In this case, we claim that for any r ∈ [2, 6), there holds

lim
n→∞

sup
y∈R3

∫
B1(y)

|un|rdx = 0. (3.25)

If (3.24) is not true, then there exists σ > 0 and r ∈ [2, 6) such that

lim
n→∞

sup
y∈R3

∫
B1(y)

|un|rdx > σ > 0. (3.26)

Hence, it follows from (3.26) that lim
n→∞

∫
B1(yn)

|un|rdx ≥ σ
2 > 0. Then we obtain

lim
n→∞

∫
B1(0)

|ωn|rdx ≥ σ
2 > 0. Thus ωn ⇀ ω ̸= 0, which is a contradiction. Therefore,

(3.25) holds and it follows from Lemma 3.1 that un → 0 in Lr(R3) for 2 < r < 6.
Thus by the same arguments as in the proof of Lemma 3.3, we derive c∞ ≥ Λ∗, a
contradiction. Then the claim holds. In view of (3.24), by a standard argument,
we can obtain that I ′∞(ω) = 0, which implies

c∞ = lim
n→∞

[
I∞(ωn)−

1

2p
⟨I ′∞(ωn), ωn⟩

]
= lim

n→∞

[
(
1

2
− 1

2p
)∥ωn∥2ε + (

1

4
− 1

2p
)b

(∫
R3

|∇ωn|2dx
)2

+ (
1

2p
− 1

q
)λ

∫
R3

K(εx)|ωn|qdx+ (
1

2p
− 1

6
)

∫
R3

Q(εx)|ωn|6dx
]

≥ (
1

2
− 1

2p
)∥ω∥2ε + (

1

4
− 1

2p
)b

(∫
R3

|∇ω|2dx
)2

+ (
1

2p
− 1

q
)λ

∫
R3

K(εx)|ω|qdx+ (
1

2p
− 1

6
)

∫
R3

Q(εx)|ω|6dx

= I∞(ω).

On the other hand, it follows from ω ∈ N∞ that I∞(ω) ≥ c∞. Thus, from (3.24),
we know that I∞(ω) = c∞. The proof is complete.

Lemma 3.6. Under the conditions of Theorem 1.1, there exists ε0 > 0 such that
cε < c∞ for all ε ∈ (0, ε0).

Proof. It follows from the condition (V1) that there exists a fixed ζ ∈ R such that
V0 < ζ < V∞. Define

Iζ(u) =
a

2

∫
R3

|∇u|2dx+
ζ

2

∫
R3

u2dx+
b

4

( ∫
R3

|∇u|2dx
)2

+
µ

2p

∫
R3

(I ∗ |u|p)|u|pdx

− λ

q

∫
R3

K∞|u|qdx− 1

6

∫
R3

Q∞|u|6dx

and
Nζ =

{
u ∈ H1(R3) \ {0} : ⟨I ′ζ(u), u⟩ = 0

}
, cζ = inf

u∈Nζ

Iζ(u).

From Lemma 3.5, we know that there exists ζ0 ∈ Nζ such that cζ = Iζ(ζ0). For any
given r > 0, let ψr ∈ C∞

0 (R3, [0, 1]) be such that ψr ≡ 1 for all |x| < r and ψr ≡ 0
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for all |x| ≥ 2r. Set ur(x) = ψr(x)ζ0(x) and take tr > 0 such that ūr = trur ∈ Nζ .
We claim that there exists r0 > 0 such that Iζ(ū) < c∞ at ū = ūr0 . Therefore

c∞ = lim inf
n→∞

Iζ(trur) = Iζ(ζ0) = cζ < c∞,

which is impossible. Thus our claim is true. Since suppū is compact, then there
exists ε0 > 0 such that V (εx) ≤ ζ for all 0 < ε < ε0 and x ∈ suppū. Therefore

max
t≥0

Iε(tū) ≤ max
t≥0

Iζ(tū) = Iζ(ū) = cζ < c∞, for all ε ∈ (0, ε0).

In view of (2.4), we know that cε < c∞ for all 0 < ε < ε0. The proof is complete.

Proof of Theorem 1.1. It follows from Lemma 2.2, Lemma 3.3, Lemma 3.4 and
Lemma 3.6 that Iε has a nontrivial solution u ∈ Eε. In view of (2.4), u is a ground
state solution of problem (1.1). If we replace Iε by the following functional:

I+ε (u) =
1

2
∥u∥2ε +

b

4

( ∫
R3

|∇u|2dx
)2

+
µ

2p

∫
R3

(I ∗ |u|p)|u|pdx− λ

q

∫
R3

K(εx)|u+|qdx

− 1

6

∫
R3

Q(εx)|u+|6dx,

where u± = max{±u, 0}. Then we see that all the above calculations can be
repeated word by word. So I+ε has a nontrivial ground state critical point u ∈ Eε.
Hence

0 = ⟨I ′ε(u), u−⟩ = ∥u−∥2ε + b

∫
R3

|∇u|2dx
∫
R3

|∇u−|2dx+ µ

∫
R3

(I ∗ |u|p)|u−|pdx

≥ ∥u−∥2ε,

where u± = max{±u, 0}, u ≥ 0. It follows from the maximum principle that u > 0,
i.e., u is a positive solution of problem (1.1). Similar to the proof of Theorem 1.1
in [20], by using the Nash-Moser method together with some careful estimations,
we can obtain that u ∈ L∞(R3) and there is s > 1, r0 = r0(t) > 0 such that for
every r ≥ r0,

|u|∞(|x|≥r) < M |u|s(|x|≥ r
2 )
< +∞,

where M is a positive constant independent of r. Furthermore, lim
|x|→∞

u(x) = 0 and

u ∈ C1,γ
loc (R3) for some γ ∈ (0, 1). The proof is complete. □

4. Concentration of positive ground state

In this section, we are devoted to the concentration behavior of the positive
ground state for problem (1.1). We need the following energy functional associated
with problem (1.7)

I0(u) =
a

2

∫
R3

|∇u|2dx+
1

2

∫
R3

V0u
2dx+

b

4

( ∫
R3

|∇u|2dx
)2

+
µ

2p

∫
R3

(I ∗ |u|p)|u|pdx− λ

q

∫
R3

K0|u|qdx− 1

6

∫
R3

Q0|u|6dx,
(4.1)
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and set

N0 = {u ∈ H1(R3) \ {0} : ⟨I ′0(u), u⟩ = 0}, c0 = inf
u∈N0

I0(u).

In the following, we will introduce some properties for the energy functional
I0.
Lemma 4.1. Let {un} ⊂ N0 be a sequence such that I0(un) → c0 as n→ ∞, then
either {un} has a convergent subsequence in H1(R3) or there exists {yn} ⊂ R3 such
that the sequence ωn(x) = un(x+ yn) converges strongly in H1(R3). In particular,
there exists a minimizer of c0.

Proof. By a standard argument, we can obtain that {un} is bounded in H1(R3).
Then there exists u0 ∈ H1(R3) such that un ⇀ u0 in H1(R3). Now we claim that
there exist R, σ > 0 and a sequence {yn} ⊂ R3 such that

lim inf
n→∞

∫
BR(yn)

|un|2dx ≥ σ > 0. (4.2)

Argue by contradiction that for all r > 0, there holds

lim
n→∞

sup
y∈R3

∫
BR(y)

|un|2dx = 0.

Then it follows from Lemma 3.1 that un → 0 in Lr(R3) for all 2 < r < 6. Hence,∫
R3 K0|u|qdx → 0 as n → ∞ and

∫
R3(I ∗ |un|p)|un|pdx → 0, as n → ∞ by (2.5).

Furthermore, from ⟨I ′0(un), un⟩ = 0, we obtain

a

∫
R3

|∇un|2dx+

∫
R3

V0u
2
ndx+ b

(∫
R3

|∇un|2dx
)2

=

∫
R3

Q0|un|6dx+ o(1). (4.3)

Hence, we may assume that there exist li ≥ 0(i = 1, 2, 3) such that∫
R3

(
a|∇un|2+V0u2n

)
dx→ l1, b

( ∫
R3

|∇un|2dx
)2→ l2,

∫
R3

Q0|un|6dx→ l3, as n→ ∞,

thus l3 = l1 + l2. It is obvious that l1 > 0 and then l2 , l3 > 0. In view of (4.1), we
have

m0 + o(1) = I0(un)−
1

6
⟨I ′0(un), un⟩

=
a

3

∫
R3

|∇un|2dx+
1

3

∫
R3

V0un|2dx+
b

12

(∫
R3

|∇un|2dx
)2

+ o(1)

=
1

3
l1 +

1

12
l2.

By the similar arguments as the proof of (3.4), we can obtain that c0 ≥ Λ∗. Since
cε < Λ∗, then in order to prove (4.2), it suffices to prove that

cε ≥ c0 for all ε ∈ (0, ε∗). (4.4)

Argue by contradiction that there exists ε0 ∈ (0, ε∗) such that cε0 < c0. It follows
from the definition of c0 that max

t>0
I0(tuε0) ≥ c0. Furthermore, from the definitions

of V0, K0 and Q0, we have

c0 > max
t>0

Iε0(tuε0) ≥ max
t>0

I0(tuε0) ≥ c0,



Existence result for Kirchhoff equations 2139

which is a contradiction, then (4.2) holds. Moreover, in view of the Ekeland varia-
tional principle in [12], we may assume that I0(un) → c0 and I ′0(un) → 0 as n→ ∞.
It follows from Lemma 2.1 that ⟨I ′0(u0), u0⟩ = 0. If u0 ̸= 0, then from (4.1) and
Fatou’s Lemma, we obtain

c0 ≤ I0(u0) = I0(u0)−
1

q
⟨I ′0(u0), u0⟩

= (
1

2
− 1

q
)

∫
R3

(
a|∇u0|2 + V0u

2
0

)
dx+ (

1

4
− 1

q
)

(∫
R3

|∇u0|2dx
)2

+ (
1

2p
− 1

q
)µ

∫
R3

(I ∗ |u0|p)|u0|pdx+ (
1

q
− 1

6
)

∫
R3

Q0|u0|6dx

≤ lim inf
n→∞

[
(
1

2
− 1

q
)

∫
R3

(
a|∇un|2 + V0u

2
n

)
dx+ (

1

4
− 1

q
)

(∫
R3

|∇un|2dx
)2

+ (
1

2p
− 1

q
)µ

∫
R3

(I ∗ |un|p)|un|pdx+ (
1

q
− 1

6
)

∫
R3

Q0|un|6dx
]

= lim inf
n→∞

(
I0(un)−

1

q
⟨I ′0(un), un⟩

)
≤ c0,

which implies that lim
n→∞

∫
R3

(
a|∇un|2 + V0u

2
n

)
dx =

∫
R3

(
a|∇u0|2 + V0u

2
0

)
dx. Thus,

un → u0 in H1(R3). For the case u0 = 0, let vn(x) = un(x+ yn), then I0(vn) → c0
and I ′0(vn) → 0 as n→ ∞. It follows from (4.2) that there exists v ∈ H1(R3) with
v ̸= 0 such that vn ⇀ v in H1(R3). Thus, the proof follows from the arguments
used in the case of u0 ̸= 0. The proof is complete.

Lemma 4.2. The minimax level cε converges to c0 as ε→ 0+.

Proof. For any R > 0, define uR(x) = ϕR(x)u0, here u0 is a positive ground state
solution of problem (1.7) and ϕR = ψ(x/R), where ψ ∈ C∞(R3, [0, 1]) satisfying
ψ(x) = 1 if |x| ≤ 1

2 and ψ(x) = 0 if |x| ≥ 1. It follows from Lebesgue Theorem that

uR → u0, as R→ ∞. (4.5)

It follows from Lemma 2.1 that for each ε, R > 0, there exists tε,R > 0 such that

Iε(tε,RuR) = max
t≥0

Iε(tuR).

Then

1

t2p−2
ε,R

∫
BR(0)

(
a|∇uR|2 + V (εx)u2R

)
dx+

b

t2p−4
ε,R

(∫
BR(0)

|∇uR|2dx
)2

+ µ

∫
BR(0)

(I ∗ |uR|p)|uR|pdx

=tq−2p
ε,R

∫
BR(0)

λK(εx)|uR|qdx+ t6−2p
ε,R

∫
BR(0)

Q(εx)|uR|6dx.

(4.6)
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From (4.6), we get

1

t2p−2
ε,R

∫
BR(0)

(
a|∇uR|2 + |V |∞(|x|<R)u

2
R

)
dx+

b

t2p−4
ε,R

(∫
BR(0)

|∇uR|2dx
)2

+ µ

∫
BR(0)

(I ∗ |uR|p)|uR|pdx

≥tq−2p
ε,R

∫
BR(0)

λK∞|uR|qdx+ t6−2p
ε,R

∫
BR(0)

Q∞|uR|6dx.

(4.7)

It follows from (4.7) that (tε,R) is bounded, i.e., for each R > 0, there exists tR > 0
such that

0 < lim
ε→0+

tε,R = tR.

Thus, passing the limit as ε→ 0+ in (4.6), we have

1

t2R

∫
BR(0)

(
a|∇uR|2 + V (εx)u2R

)
dx+ b

(∫
BR(0)

|∇uR|2dx
)2

+ µ

∫
BR(0)

(I ∗ |uR|p)|uR|pdx

=tq−4
R

∫
BR(0)

λK(εx)|uR|qdx+ t2R

∫
BR(0)

Q(εx)|uR|6dx.

(4.8)

From (4.5) and (4.8), we can easily get that lim
R→∞

tR = 1 and I0(tRuR) = max
t≥0

I0(tuR).
Hence, it follows form (4.8) and cε ≤ max

t≥0
Iε(tuR) = Iε(tRuR) that

lim sup
ε→0+

cε ≤ I0(tRuR).

From (4.5), we deduce that lim sup
ε→0+

cε ≤ c0. On the other hand, it follows from (4.4)

that lim inf
ε→0+

cε ≥ c0. Thus, lim
ε→0+

cε = c0. The proof is complete.

Lemma 4.3. For the family vε(x) := uε(εx) satisfying Iε(vε) = cε and I ′ε(vε) = 0,
there exist ε∗ > 0, a family {yε} ⊂ R3 and constants r, σ > 0 such that∫

Br(yε)

v2ε ≥ σ, for all ε ∈ (0, ε∗). (4.9)

Furthermore, the family {εyε} is bounded. In particular, if x0 is the limit of the
sequence {εnyεn} in the family {εyε}, then we have V (x0) = V0 and x0 ∈ Λ∩Λ1∩Λ2.

Proof. Argue by contradiction that (4.9) does not hold. Then there exists a
sequence εn converging to zero such that

lim
n→∞

sup
y∈R3

∫
Br(y)

v2εn = 0.

Similar to the proof of Lemma 4.1, we can get a contradiction. Thus, (4.9) holds.
Set yn = yεn and vn(x) = vεn(x). Suppose by contradiction that εnyn → ∞ as
n→ ∞. Set ωn(x) = vn(x+ yn). Then it follows from (4.9) that∫

Br(0)

ω2
n ≥ σ, for all n ∈ N. (4.10)
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Therefore, ωn solves the following system
−
(
a+ b

∫
R3

|∇ωn|2dx
)
∆ωn + V (εnx+ εny)ωn + µφ|ωn|p−2ωn

= f(x, ωn), in R3,

(−∆)
α
2 φ = µ|ωn|p, u > 0, in R3,

where f(x, ωn) = λK(εnx+ εny)|ωn|q−2ωn +Q(εnx+ εny)|ωn|4ωn. It follows from
the invariance of R3 by translations that ∥ωn∥ = ∥vn∥. By a standard argument,
we can prove that ωn is bounded in H1(R3). Then there exists ω ∈ H1(R3) such
that ωn ⇀ ω. It follows from (4.10) that ω ≥ 0, ω ̸= 0. It follows from Lemma 2.1
that there exists tn > 0 such that ω̃n = tnωn ∈ N0. From Lemma 4.2, we obtain

I0(ω̃n) ≤
1

2

∫
R3

(
a|∇ω̃n|2 + V (εn(x+ yn)ω̃

2
n

)
dx+

b

4

(∫
R3

|∇ω̃n|2dx
)2

+
µ

2p

∫
R3

(I ∗ |ω̃n|p)|ω̃n|pdx− 1

q

∫
R3

λK(εn(x+ yn)|ω̃n|qdx

− 1

6

∫
R3

Q(εn(x+ yn)|ω̃n|6dx

= Iεn(tnvn) ≤ Iεn(vn) = c0 + o(1).

It is obvious that I0(ω̃n) ≥ c0. Hence, lim
n→∞

I0(ω̃n) = c0. We first claim that
{tn} is bounded. If not, then tn → ∞ as n → ∞. We can easily prove that
I0(tnωn) → −∞ as n → ∞, which is a contradiction with I0(tnωn) ≥ c0 for all
n ∈ N. Up to a subsequence, we may assume that tn → t ≥ 0. If t = 0, then it
follows from the boundedness of {ωn} that ω̃n → 0 in H1(R3), thus, I0(ω̃n) → 0
as n → ∞, which contradicts with c0 > 0. Then t > 0 and the weak limit of ω̃n is
different zero. Let ω̃n ⇀ ω̃ in H1(R3) as n→ ∞. It follows from the uniqueness of
the weak limit and the sequentially continuity of I ′0 that ω̃ = tω and ω̃ ∈ N0. From
Lemma 4.1, we know that ω̃n → ω̃ in H1(R3) as n → ∞, then ωn → ω in H1(R3).
Hence, it follows from Fatou’s Lemma and ω̃n ∈ N0 that

c0 ≤ I0(ω̃) < I∞(ω̃)− 1

2p
⟨I ′0(ω̃), ω̃⟩

=

∫
R3

[
(
1

2
− 1

2p
)a|∇ω̃|2 + (

V∞
2

− V0
2p

)ω̃2
]
dx

+ (
1

4
− 1

2p
)b

(∫
R3

|∇ω̃|2dx
)2

+

∫
R3

(
λ

2p
K0 −

λ

q
K∞)|ω̃|qdx+

∫
R3

(
Q0

2p
− Q∞

6
)|ω̃|6dx

≤ lim inf
n→∞

[ ∫
R3

[
(
1

2
− 1

2p
)a|∇ω̃n|2 + (

V (εnx+ εny)

2
− V0

2p
)ω̃2

n

]
dx

+ (
1

4
− 1

2p
)b

(∫
R3

|∇ω̃|2dx
)2

+

∫
R3

(
λ

2p
K0 −

λ

q
K(εnx+ εny))|ω̃n|qdx

(4.11)
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+

∫
R3

(
Q0

2p
− Q(εnx+ εny)

6
)|ω̃n|6dx

]
≤ lim inf

n→∞
Iεn(tnvn) ≤ lim inf

n→∞
Iεn(vn) = c0,

which is a contradiction. Thus, {εnyn} is bounded, and then there exists x0 ∈ R3

such that εnyn → x0.
Define the functional Ix0

as follows:

Ix0(u) =
a

2

∫
R3

|∇u|2dx+
1

2

∫
R3

V (x0)u
2dx+

b

4

( ∫
R3

|∇u|2dx
)2

+
µ

2p

∫
R3

(I ∗ |u|p)|u|pdx− λ

q

∫
R3

K(x0)|u|qdx− 1

6

∫
R3

Q(x0)|u|6dx.

Hence, if V (x0) > V0, we can get a contradiction by using Ix0
to take the place of

I∞ in (4.11). Thus, V (x0) = V0, that is, x0 ∈ Λ. If x0 ̸∈ Λ1 ∩ Λ2, i.e., K(x0) < K0

or Q(x0) < Q0, then I0(ω̃) < Ix0
(ω̃). Therefore, we can get a contradiction by

repeating the same arguments used above. Thus, x0 ∈ Λ ∩ Λ1 ∩ Λ2. The proof is
complete.
Proof of Theorem 1.2. From Lemma 4.3, we can easily prove Theorem 1.2.
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