首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The method of approximate particular solutions (MAPS) is used to solve the two‐dimensional Navier–Stokes equations. This method uses particular solutions of a nonhomogeneous Stokes problem, with the multiquadric radial basis function as a nonhomogeneous term, to approximate the velocity and pressure fields. The continuity equation is not explicitly imposed since the used particular solutions are mass conservative. To improve the computational efficiency of the global MAPS, the domain is split into overlapped subdomains where the Schwarz Alternating Algorithm is employed using velocity or traction values from neighboring subdomains as boundary conditions. When imposing only velocity boundary conditions, an extra step is required to find a reference value for the pressure at each subdomain to guarantee continuity of pressure across subdomains. The Stokes lid‐driven cavity flow problem is solved to assess the performance of the Schwarz algorithm in comparison to a finite‐difference‐type localized MAPS. The Kovasznay flow problem is used to validate the proposed numerical scheme. Despite the use of relative coarse nodal distributions, numerical results show excellent agreement with respect to results reported in literature when solving the lid‐driven cavity (up to Re = 10,000) and the backward facing step (at Re = 800) problems. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 777–797, 2015  相似文献   

2.
During the last years, there has been increased interest in developing efficient radial basis function (RBF) algorithms to solve partial differential problems of great scale. In this article, we are interested in solving large PDEs problems, whose solution presents rapid variations. Our main objective is to introduce a RBF dynamical domain decomposition algorithm which simultaneously performs a node adaptive strategy. This algorithm is based on the RBFs unsymmetric collocation setting. Numerical experiments performed with the multiquadric kernel function, for two stationary problems in two dimensions are presented. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

3.
In this article, we apply the univariate multiquadric (MQ) quasi‐interpolation to solve the hyperbolic conservation laws. At first we construct the MQ quasi‐interpolation corresponding to periodic and inflow‐outflow boundary conditions respectively. Next we obtain the numerical schemes to solve the partial differential equations, by using the derivative of the quasi‐interpolation to approximate the spatial derivative of the differential equation and a low‐order explicit difference to approximate the temporal derivative of the differential equation. Then we verify our scheme for the one‐dimensional Burgers' equation (without viscosity). We can see that the numerical results are very close to the exact solution and the computational accuracy of the scheme is ??(τ), where τ is the temporal step. We can improve the accuracy by using the high‐order quasi‐interpolation. Moreover the methods can be generalized to the other equations. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

4.
In this article, residual‐type a posteriori error estimates are studied for finite volume element (FVE) method of parabolic equations. Residual‐type a posteriori error estimator is constructed and the reliable and efficient bounds for the error estimator are established. Residual‐type a posteriori error estimator can be used to assess the accuracy of the FVE solutions in practical applications. Some numerical examples are provided to confirm the theoretical results. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 259–275, 2017  相似文献   

5.
This study presents numerical solutions to linear and nonlinear Partial Differential Equations (PDEs) by using the peridynamic differential operator. The solution process involves neither a derivative reduction process nor a special treatment to remove a jump discontinuity or a singularity. The peridynamic discretization can be both in time and space. The accuracy and robustness of this differential operator is demonstrated by considering challenging linear, nonlinear, and coupled PDEs subjected to Dirichlet and Neumann‐type boundary conditions. Their numerical solutions are achieved using either implicit or explicit methods. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1726–1753, 2017  相似文献   

6.
This article is concerned with a method for solving nonlocal initial‐boundary value problems for parabolic and hyperbolic integro‐differential equations in reproducing kernel Hilbert space. Convergence of the proposed method is studied under some hypotheses which provide the theoretical basis of the proposed method and some error estimates for the numerical approximation in reproducing kernel Hilbert space are presented. Finally, two numerical examples are considered to illustrate the computation efficiency and accuracy of the proposed method. © 2016 The Authors Numerical Methods for Partial Differential Equations Published by Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 174–198, 2017  相似文献   

7.
In this article, we introduce a new, simple, and accurate computational technique for one‐dimensional Burgers' equation. The idea behind this method is the use of polynomial based differential quadrature (PDQ) for the discretization of both time and space derivatives. The quasilinearization process is used for the elimination of nonlinearity. The resultant scheme has simulated for five classic examples of Burgers' equation. The simulation outcomes are validated through comparison with exact and secondary data in the literature for small and large values of kinematic viscosity. The article has deduced that the proposed scheme gives very accurate results even with less number of grid points. The scheme is found to be very simple to implement. Hence, it applies to any domain requires quick implementation and computation.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2023–2042, 2017  相似文献   

8.
A numerical investigation on a technique for choosing an optimal shape parameter is proposed. Radial basis functions (RBFs) and their derivatives are used as interpolants in the asymmetric collocation radial basis method, for solving systems of partial differential equations. The shape parameter c in RBFs plays a major role in obtaining high quality solutions for boundary value problems. As c is a user defined value, inexperienced users may compromise the quality of the solution, often a problem of this meshless method. Here we propose a statistical technique to choose the shape parameter in radial basis functions. We use a cross‐validation technique suggested by Rippa 6 for interpolation problems to find a cost function Cost(c) that ideally has the same behavior as an error function. If that is the case, the parameter c that minimizes the cost function will be an optimal shape parameter, in the sense that it minimizes the error function. The form of the cost and error functions are analized for several examples, and for most cases the two functions have a similar behavior. The technique produced very accurate results, even with a small number of points and irregular grids. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

9.
A simpler proof is given of the result of (Whitley and Hromadka II, Numer Methods Partial Differential Eq 21 (2005) 905–917) that, under very mild conditions, any solution to a Dirichlet problem with given continuous boundary data can be approximated by a sum involving a single function of one complex variable; any analytic function not a polynomial can be used. This can be applied to give a method for the numerical solution of potential problems in dimension three or higher. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

10.
The radial basis function (RBF) collocation method uses global shape functions to interpolate and collocate the approximate solution of PDEs. It is a truly meshless method as compared to some of the so‐called meshless or element‐free finite element methods. For the multiquadric and Gaussian RBFs, there are two ways to make the solution converge—either by refining the mesh size h, or by increasing the shape parameter c. While the h‐scheme requires the increase of computational cost, the c‐scheme is performed without extra effort. In this paper we establish by numerical experiment the exponential error estimate ? ~ Oc?h) where 0 < λ < 1. We also propose the use of residual error as an error indicator to optimize the selection of c. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 571–594, 2003  相似文献   

11.
In this article, a Galerkin's finite element approach based on weighted‐residual is presented to find approximate solutions of a system of fourth‐order boundary‐value problems associated with obstacle, unilateral and contact problems. The approach utilizes a piece‐wise cubic approximations utilizing cubic Hermite interpolation polynomials. Numerical studies have shown the superior accuracy and lesser computational cost of the scheme in comparison to cubic spline, non‐polynomial spline and cubic non‐polynomial spline methods. Numerical examples are presented to illustrate the applicability of the method. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1551–1560, 2011  相似文献   

12.
This article describes a new meshless method based on the dual reciprocity method (DRM) for the numerical solution of one‐dimensional stochastic heat and advection–diffusion equations. First, the time derivative is approximated by the time–stepping method to transforming the original stochastic partial differential equations (SPDEs) into elliptic SPDEs. The resulting elliptic SPDEs have been approximated with the new method, which is a combination of radial basis functions (RBFs) method and the DRM method. We have used inverse multiquadrics (IMQ) and generalized IMQ (GIMQ) RBFs, to approximate functions in the presented method. The noise term has been approximated at the source points, at each time step. The developed formulation is verified in two test problems with investigating the convergence and accuracy of numerical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 292–306, 2016  相似文献   

13.
This study is carried out to investigate the numerical solutions of the Kawahara, KdV‐Kawahara, and the modified Kawahara equations by using the meshless method based on collocation with radial basis functions. Results of the meshless method with different radial basis functions are presented for the travelling wave solution of the Kawahara type equations. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 542–553, 2012  相似文献   

14.
In this article, we apply a modified weak Galerkin method to solve variational inequality of the first kind which includes Signorini and obstacle problems. Optimal order a priori error estimates in the energy norm are derived. We also provide some numerical experiments to validate the theoretical results.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1459–1474, 2017  相似文献   

15.
A standard approach for solving linear partial differential equations is to split the solution into a homogeneous solution and a particular solution. Motivated by the method of fundamental solutions for solving homogeneous equations, we propose a similar approach using the method of approximate particular solutions for solving linear inhomogeneous differential equations without the need of finding the homogeneous solution. This leads to a much simpler numerical scheme with similar accuracy to the traditional approach. To demonstrate the simplicity of the new approach, three numerical examples are given with excellent results. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 506–522, 2012  相似文献   

16.
In this article, a new method is introduced for finding the exact solution of the product form of parabolic equation with nonlocal boundary conditions. Approximation solution of the present problem is implemented by the Ritz–Galerkin method in Bernoulli polynomials basis. The properties of Bernoulli polynomials are first presented, then Ritz–Galerkin method in Bernoulli polynomials is used to reduce the given differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the techniques presented in this article for finding the exact and approximation solutions. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1143–1158, 2017  相似文献   

17.
In this article, the Adomian decomposition method has been used to obtain solutions of fourth‐order fractional diffusion‐wave equation defined in a bounded space domain. The fractional derivative is described in the Caputo sense. Convergence of the method has been discussed with some illustrative examples. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

18.
The aim of this article is to establish the convergence and error bounds for the fully discrete solutions of a class of nonlinear equations of reaction–diffusion nonlocal type with moving boundaries, using a linearized Crank–Nicolson–Galerkin finite element method with polynomial approximations of any degree. A coordinate transformation which fixes the boundaries is used. Some numerical tests to compare our Matlab code with some existing moving finite element methods are investigated. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1515–1533, 2015  相似文献   

19.
In this work, we propose and analyze the pressure stabilization method for the unsteady incompressible Brinkman‐Forchheimer equations. We present a time discretization scheme which can be used with any consistent finite element space approximation. Second‐order error estimate is proven. Some numerical results are also given.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1949–1965, 2017  相似文献   

20.
Higher order non‐Fickian diffusion theories involve fourth‐order linear partial differential equations and their solutions. A quintic polynomial spline technique is used for the numerical solutions of fourth‐order partial differential equations with Caputo time fractional derivative on a finite domain. These equations occur in many applications in real life problems such as modeling of plates and thin beams, strain gradient elasticity, and phase separation in binary mixtures, which are basic elements in engineering structures and are of great practical significance to civil, mechanical, and aerospace engineering. The quintic polynomial spline technique is used for space discretization and the time‐stepping is done using a backward Euler method based on the L1 approximation to the Caputo derivative. The stability and convergence analysis are also discussed. The numerical results are given, which demonstrate the effectiveness and accuracy of the numerical method. The numerical results obtained in this article are also compared favorably well with the results of (S. S. Siddiqi and S. Arshed, Int. J. Comput. Math. 92 (2015), 1496–1518). © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 445–466, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号