首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this work, the method of radial basis functions is used for finding the solution of an inverse problem with source control parameter. Because a much wider range of physical phenomena are modelled by nonclassical parabolic initial-boundary value problems, theoretical behavior and numerical approximation of these problems have been active areas of research. The radial basis functions (RBF) method is an efficient mesh free technique for the numerical solution of partial differential equations. The main advantage of numerical methods which use radial basis functions over traditional techniques is the meshless property of these methods. In a meshless method, a set of scattered nodes are used instead of meshing the domain of the problem. The results of numerical experiments are presented and some comparisons are made with several well-known finite difference schemes.  相似文献   

2.
In this article, we study a spectral meshless radial point interpolation of pseudoparabolic equations in two spatial dimensions. Shape functions, which are constructed through point interpolation method using the radial basis functions, help us to treat problem locally with the aim of high‐order convergence rate. The time derivatives are approximated by the finite difference time‐stepping method. The stability and convergence of this meshless approach are discussed and theoretically proven. Numerical results are presented to illustrate the theoretical findings. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 724–741, 2017  相似文献   

3.
This paper presents a meshless method, which replaces the inhomogeneous biharmonic equation by two Poisson equations in terms of an intermediate function. The solution of the Poisson equation with the intermediate function as the right-hand term may be written as a sum of a particular solution and a homogeneous solution of a Laplace equation. The intermediate function is approximated by a series of radial basis functions. Then the particular solution is obtained via employing Kansa’s method, while the homogeneous solution is approximated by using the boundary radial point interpolation method by means of boundary integral equations. Besides, the proposed meshless method, in conjunction with the analog equation method, is further developed for solving generalized biharmonic-type problems. Some numerical tests illustrate the efficiency of the method proposed.  相似文献   

4.
In this article, a kind of meshless local radial point interpolation (MLRPI) method is proposed to two‐dimensional fractional‐time convection‐diffusion‐reaction equations and satisfactory agreements are archived. This method is based on meshless methods and benefits from collocation ideas but it does not belong to the traditional global meshless collocation methods. In MLRPI method, it does not need any kind of integration locally or globally over small quadrature domains which is essential in the finite element method and those meshless methods based on Galerkin weak form. Also, it is not needed to determine shape parameter which plays important role in collocation method based on the radial basis functions (Kansa's method). Therefore, computational costs of this kind of MLRPI method is less expensive. The stability and convergence of this meshless approach are discussed and theoretically proven. It is proved that the present meshless formulation is very effective for modeling and simulation of fractional differential equations. Furthermore, the numerical studies on sensitivity analysis and convergence analysis show the stability and reliable rates of convergence. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 974–994, 2017  相似文献   

5.
Meshless method with ridge basis functions   总被引:1,自引:0,他引:1  
Meshless collocation methods for the numerical solutions of PDEs are increasingly adopted due to their advantages including efficiency and flexibility, and radial basis functions are popularly employed to represent the solutions of PDEs. Motivated by the advantages of ridge basis function representation of a given function, such as the connection to neural network, fast convergence as the number of terms is increased, better approximation effects and various applications in engineering problems, a meshless method is developed based on the collocation method and ridge basis function interpolation. This method is a truly meshless technique without mesh discretization: it neither needs the computation of integrals, nor requires a partition of the region and its boundary. Moreover, the method is applied to elliptic equations to examine its appropriateness, numerical results are compared to that obtained from other (meshless) methods, and influence factors of accuracy for numerical solutions are analyzed.  相似文献   

6.
In this study, traveling wave solutions of the modified regularized long wave (MRLW) equation are simulated by using the meshless method based on collocation with well‐known radial basis functions. The method is tested for three test problems which are single solitary wave motion, interaction of two solitary waves and interaction of three solitary waves. Invariant values for all test problems are calculated, also L2, L norms and values of the absolute error for single solitary wave motion are calculated. Numerical results by using the meshless method with different radial basis functions are presented. Figures of wave motions for all test problems are shown. Altogether, meshless methods with radial basis functions solve the MRLW equation very satisfactorily.© 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 235–247, 2012  相似文献   

7.
H. Ammari In this article, an innovative technique so‐called spectral meshless radial point interpolation (SMRPI) method is proposed and, as a test problem, is applied to a classical type of two‐dimensional time‐fractional telegraph equation defined by Caputo sense for (1 < α≤2). This new methods is based on meshless methods and benefits from spectral collocation ideas, but it does not belong to traditional meshless collocation methods. The point interpolation method with the help of radial basis functions is used to construct shape functions, which play as basis functions in the frame of SMRPI method. These basis functions have Kronecker delta function property. Evaluation of high‐order derivatives is not difficult by constructing operational matrices. In SMRPI method, it does not require any kind of integration locally or globally over small quadrature domains, which is essential of the finite element method (FEM) and those meshless methods based on Galerkin weak form. Also, it is not needed to determine strict value for the shape parameter, which plays an important role in collocation method based on the radial basis functions (Kansa's method). Therefore, computational costs of SMRPI method are less expensive. Two numerical examples are presented to show that SMRPI method has reliable rates of convergence. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the exact forms of integrals in the meshless local boundary integral equation method are derived and implemented for elastostatic problems. A weak form for a set of governing equations with a unit test function or polynomial test functions is transformed into local integral equations. Each node has its own support domain and is surrounded by a local integral domain with different shapes of boundaries. The meshless approximation based on the radial basis function (RBF) is employed for the implementation of displacements. A completed set of closed forms of the local boundary integrals are obtained. As there are no numerical integrations to be carried out the computational time is significantly reduced. Three examples are presented to demonstrate the application of this approach in solid mechanics.  相似文献   

9.
Numerical solution of the Korteweg-de Vries equation is obtained by using the meshless method based on the collocation with radial basis functions. Five standard radial basis functions are used in the method of the collocation. The results are compared for the numerical experiments of the propagation of solitons, interaction of two solitary waves and breakdown of initial conditions into a train of solitons.  相似文献   

10.
In this paper, a meshless method of lines (MMOL) is proposed for the numerical solution of nonlinear Burgers’-type equations. This technique does not require a mesh in the problem domain, and only a set of scattered nodes provided by initial data is required for the solution of the problem using some radial basis functions (RBFs). The scheme is tested for various examples. The results obtained by this method are compared with the exact solutions and some earlier work.  相似文献   

11.
In many practical problems, it is often desirable to interpolate not only the function values but also the values of derivatives up to certain order, as in the Hermite interpolation. The Hermite interpolation method by radial basis functions is used widely for solving scattered Hermite data approximation problems. However, sometimes it makes more sense to approximate the solution by a least squares fit. This is particularly true when the data are contaminated with noise. In this paper, a weighted meshless method is presented to solve least squares problems with noise. The weighted meshless method by Gaussian radial basis functions is proposed to fit scattered Hermite data with noise in certain local regions of the problem’s domain. Existence and uniqueness of the solution is proved. This approach has one parameter which can adjust the accuracy according to the size of the noise. Another advantage of the weighted meshless method is that it can be used for problems in high dimensions with nonregular domains. The numerical experiments show that our weighted meshless method has better performance than the traditional least squares method in the case of noisy Hermite data.  相似文献   

12.
We study meshless collocation methods using radial basis functions to approximate regular solutions of systems of equations with linear differential or integral operators. Our method can be interpreted as one of the emerging meshless methods, cf. T. Belytschko et al. (1996). Its range of application is not confined to elliptic problems. However, the application to the boundary value problem for an elliptic operator, connected with an integral equation, is given as an example. Although the method has been used for special cases for about ten years, cf. E.J. Kansa (1990), there are no error bounds known. We put the main emphasis on detailed proofs of such error bounds, following the general outline described in C. Franke and R. Schaback (preprint). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The meshless local Petrov–Galerkin (MLPG) method is employed for anisotropic transient thermoelasticity analysis of 2D decagonal quasicrystals (QCs) subjected to transient thermal and mechanical shock loadings. The wave type model and the elasto-hydrodynamic model are applied to derive the phonon and phason governing equations, respectively. The temperature affects only the phonon field. To find the temperature distributions on the assumed 2D domain, the anisotropic heat conduction problem is solved using the MLPG method. Also, the MLPG method is successfully employed to obtain the transient behaviors of both phonon and phason displacements by solving the governing equations in local integral equations (LIEs) forms. Making use a unit step function as the test functions in the local weak-form of governing equations, we derived the local integral equations (LIEs) considered on small subdomains identical with support domains of test functions around each node. The radial basis functions are used for approximation of the spatial variation of field variables. The Laplace-transform technique is utilized to discretize the time variations.  相似文献   

14.
A modified couple stress theory and a meshless method is used to study the bending of simply supported micro isotropic plates according to the first-order shear deformation plate theory, also known as the Mindlin plate theory. The modified couples tress theory involves only one length scale parameter and thus simplifies the theory, since experimentally it is easier to determine the single scale parameter. The equations governing bending of the first-order shear deformation theory are implemented using a meshless method based on collocation with radial basis functions. The numerical method is easy to implement, and it provides accurate results that are in excellent agreement with the analytical solutions.  相似文献   

15.
In this paper, the numerical solution of the generalized Kuramoto-Sivashinsky equation is presented by meshless method of lines (MOL). In this method the spatial derivatives are approximated by radial basis functions (RBFs) giving an edge over finite difference method (FDM) and finite element method (FEM) because no mesh is required for discretization of the problem domain. Only a set of scattered nodes is required to approximate the solution. The numerical results in comparison with exact solution using different radial basis functions (RBFs) prove the efficiency and accuracy of the method.  相似文献   

16.
The main purpose of this article is to describe a numerical scheme for solving two-dimensional linear Fredholm integral equations of the second kind on a non-rectangular domain. The method approximates the solution by the discrete collocation method based on radial basis functions (RBFs) constructed on a set of disordered data. The proposed method does not require any background mesh or cell structures, so it is meshless and consequently independent of the geometry of domain. This approach reduces the solution of the two-dimensional integral equation to the solution of a linear system of algebraic equations. The error analysis of the method is provided. The proposed scheme is also extended to linear mixed Volterra–Fredholm integral equations. Finally, some numerical examples are presented to illustrate the efficiency and accuracy of the new technique.  相似文献   

17.
This article describes a new meshless method based on the dual reciprocity method (DRM) for the numerical solution of one‐dimensional stochastic heat and advection–diffusion equations. First, the time derivative is approximated by the time–stepping method to transforming the original stochastic partial differential equations (SPDEs) into elliptic SPDEs. The resulting elliptic SPDEs have been approximated with the new method, which is a combination of radial basis functions (RBFs) method and the DRM method. We have used inverse multiquadrics (IMQ) and generalized IMQ (GIMQ) RBFs, to approximate functions in the presented method. The noise term has been approximated at the source points, at each time step. The developed formulation is verified in two test problems with investigating the convergence and accuracy of numerical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 292–306, 2016  相似文献   

18.
In this paper, we provide a new scheme for unsteady incompressible flows in vorticity-stream function formulation. Combined with the radial basis functions method, it is an efficient meshless method. Optimal accuracy can be achieved using this method. The efficiency and accuracy are demonstrated by numerical examples.  相似文献   

19.
We use a meshless method to find an approximate solution of the problem that describes a mathematical model of the filtration consolidation process in a three-dimensional domain. It is based on the collocation method using radial basis functions. The performed numerical experiments testify to the efficiency of the proposed approach.  相似文献   

20.
The present work proposes a numerical method to obtain an approximate solution of non-linear weakly singular Fredholm integral equations. The discrete Galerkin method in addition to thin-plate splines established on scattered points is utilized to estimate the solution of these integral equations. The thin-plate splines can be regarded as a type of free shape parameter radial basis functions which create an efficient and stable technique to approximate a function. The discrete Galerkin method for the approximate solution of integral equations results from the numerical integration of all integrals in the method. We utilize a special accurate quadrature formula via the non-uniform composite Gauss-Legendre integration rule and employ it to compute the singular integrals appeared in the scheme. Since the approach does not need any background meshes, it can be identified as a meshless method. Error analysis is also given for the method. Illustrative examples are shown clearly the reliability and efficiency of the new scheme and confirm the theoretical error estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号