首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a virus infection model with standard incidence rate and delayed CTL immune response is investigated. By analyzing corresponding characteristic equations, the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the CTL-activated infection equilibrium are established, respectively. By means of comparison arguments, it is verified that the infection-free equilibrium is globally asymptotically stable if the basic reproduction ratio is less than unity. By using suitable Lyapunov functional and LaSalle's invariance principle, it is shown that the CTL-inactivated infection equilibrium of the system is globally asymptotically stable if tile immune response reproduction ratio is less than unity and the basic reproduction ratio is greater than unity. Numerical simulations are carried out to illustrate the theoretical result.  相似文献   

2.
A viral infection model with nonlinear incidence rate and delayed immune response is investigated. It is shown that if the basic reproduction ratio of the virus is less than unity, the infection-free equilibrium is globally asymptotically stable. By analyzing the characteristic equation, the local stability of the chronic infection equilibrium of the system is discussed. Furthermore, the existence of Hopf bifurcations at the chronic infection equilibrium is also studied. By means of an iteration technique, sufficient conditions are obtained for the global attractiveness of the chronic infection equilibrium. Numerical simulations are carried out to illustrate the main results.  相似文献   

3.
In this paper, we propose a spatial heterogeneous viral infection model, where heterogeneous parameters, the intracellular delay and nonlocal diffusion of free virions are considered. The global well-posedness, compactness and asymptotic smoothness of the semiflow generated by the system are established. It is shown that the principal eigenvalue problem of a perturbation of the nonlocal diffusion operator has a principal eigenvalue associated with a positive eigenfunction. The principal eigenvalue plays the same role as the basic reproduction number being defined as the spectral radius of the next generation operator. The existence of the unique chronic-infection steady state is established by the super-sub solution method. Furthermore, the uniform persistence of the model is investigated by using the persistence theory of infinite dimensional dynamical systems. By setting the eigenfunction as the integral kernel of Lyapunov functionals, the global threshold dynamics of the system is established. More precisely, the infection-free steady state is globally asymptotically stable if the basic reproduction number is less than one; while the chronic-infection steady state is globally asymptotically stable if the basic reproduction number is larger than one. Numerical simulations are carried out to illustrate the effects of intracellular delay and diffusion rate on the final concentrations of infected cells and free virions, respectively.  相似文献   

4.
In this paper, we study the global dynamics of a viral infection model with a latent period. The model has a nonlinear function which denotes the incidence rate of the virus infection in vivo. The basic reproduction number of the virus is identified and it is shown that the uninfected equilibrium is globally asymptotically stable if the basic reproduction number is equal to or less than unity. Moreover, the virus and infected cells eventually persist and there exists a unique infected equilibrium which is globally asymptotically stable if the basic reproduction number is greater than unity. The basic reproduction number determines the equilibrium that is globally asymptotically stable, even if there is a time delay in the infection.  相似文献   

5.
Hepatitis B virus (HBV) infection is an important health problem worldwide. In this paper, we introduce an improved HBV model with standard incidence function and cytokine-mediated ‘cure’ based on empirical evidences. By carrying out a global analysis of the modified model and studying the stability of the equilibria, we show that infection-free equilibrium is globally asymptotically stable if the basic reproduction number of virus is less than one and, conversely, the infection equilibrium is globally asymptotically stable if the basic reproduction number of virus is greater than one. The study and information derived from this model and other related models may have an important impact on preventing mortality due to hepatitis B virus in the future.  相似文献   

6.
This paper mainly investigates the global asymptotic stabilities of two HIV dynamics models with two distributed intracellular delays incorporating Beddington-DeAngelis functional response infection rate. An eclipse stage of infected cells (i.e. latently infected cells), not yet producing virus, is included in our models. For the first model, it is proven that if the basic reproduction number $R_0$ is less than unity, then the infection-free equilibrium is globally asymptotically stable, and if $R_0 $ is greater than unity, then the infected equilibrium is globally asymptotically stable. We also obtain that the disease is always present when $R_0 $ is greater than unity by using a permanence theorem for infinite dimensional systems. What is more, a n-stage-structured HIV model with two distributed intracellular delays, which is the extensions to the first model, is developed and analyzed. We also prove the global asymptotical stabilities of two equilibria by constructing suitable Lyapunov functionals.  相似文献   

7.
In this paper, a mathematical model describing the transmission dynamics of an infectious disease with an exposed (latent) period and waning vaccine-induced immunity is investigated. The basic reproduction number is found by applying the method of the next generation matrix. It is shown that the global dynamics of the model is completely determined by the basic reproduction number. By means of appropriate Lyapunov functionals and LaSalle’s invariance principle, it is proven that if the basic reproduction number is less than or equal to unity, the disease-free equilibrium is globally asymptotically stable and the disease fades out; and if the basic reproduction number is greater than unity, the endemic equilibrium is globally asymptotically stable and therefore the disease becomes endemic.  相似文献   

8.
研究了一类具有饱和发生率及免疫的SEIR,传染病模型、构造适当的Lyapunov泛函并运用时滞微分方程的LaSalle型定理,证明了当基本再生数小于1时,无病平衡点是全局渐进稳定的,当基本再生数大于1时,地方病平衡点存在并且是全局渐近稳定的.  相似文献   

9.
In this article we study the dynamical behaviour of a intracellular delayed viral infection with immune impairment model and general non-linear incidence rate. Several techniques, including a non-linear stability analysis by means of the Lyapunov theory and sensitivity analysis, have been used to reveal features of the model dynamics. The classical threshold for the basic reproductive number is obtained: if the basic reproductive number of the virus is less than one, the infection-free equilibrium is globally asymptotically stable and the infected equilibrium is globally asymptotically stable if the basic reproductive number is higher than one.  相似文献   

10.
In this paper, we study a viral infection model with an immunity time delay accounting for the time between the immune system touching antigenic stimulation and generating CTLs. By calculation, we derive two thresholds to determine the global dynamics of the model, i.e., the reproduction number for viral infection $R_{0}$ and for CTL immune response $R_{1}$. By analyzing the characteristic equation, the local stability of each feasible equilibrium is discussed. Furthermore, the existence of Hopf bifurcation at the CTL-activated infection equilibrium is also studied. By constructing suitable Lyapunov functionals, we prove that when $R_{0}\leq1$, the infection-free equilibrium is globally asymptotically stable; when $R_{0}>1$ and $R_{1}\leq1$, the CTL-inactivated infection equilibrium is globally asymptotically stable; Numerical simulation is carried out to illustrate the main results in the end.  相似文献   

11.
A model with differential susceptibility, differential infectivity (DS–DI), and age of infection is formulated in this paper. The susceptibles are divided into n groups according to their susceptibilities. The infectives are divided into m groups according to their infectivities. The total population size is assumed constant. Formula for the reproductive number is derived so that if the reproduction number is less than one, the infection-free equilibrium is locally stable, and unstable otherwise. Furthermore, if the reproductive number is less than one, the infection-free equilibrium is globally asymptotically stable. If the reproductive number is greater than one, it is shown that there exists a unique endemic equilibrium which is globally asymptotically stable. This result is obtained through a Lyapunov function.  相似文献   

12.
This paper deals with the global analysis of a dynamical model for the spread of tuberculosis with a general contact rate. The model exhibits the traditional threshold behavior. We prove that when the basic reproduction ratio is less than unity, then the disease-free equilibrium is globally asymptotically stable and when the basic reproduction ratio is great than unity, a unique endemic equilibrium exists and is globally asymptotically stable under certain conditions. The stability of equilibria is derived through the use of Lyapunov stability theory and LaSalle’s invariant set theorem. Numerical simulations are provided to illustrate the theoretical results.  相似文献   

13.
考虑到HIV-1感染过程中免疫反应和非线性感染函数,建立了一类具有三个分布时滞的HIV-1感染动力学模型.得到了关于病毒感染的基本再生数R0和CTLs免疫反应的基本再生数R1 <R0.通过构造Lyapunov泛函证明了系统具有阈值动力学性质,即当R0≤1时,系统存在全局渐近稳定的无感染平衡点;当R1≤1<R0时,系统出...  相似文献   

14.
In this paper, an SEIS epidemic model with nonlinear incidence and time delay is investigated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria of the model is established. By using suitable Lyapunov functional and LaSalle's invariance principle, it is shown that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than unity. If the basic reproduction number is greater than unity, by means of an iteration technique, sufficient conditions are derived for the global stability of the endemic equilibrium. Numerical simulations are carried out to illustrate the theoretical results.  相似文献   

15.
In this paper, incorporating the delay of viral cytopathicity within target cells, we first presented a basic model of viral infection with delay, and then extended it into a model with two delays and two types of target cells. For the models proposed here, both their basic reproduction numbers are found. By constructing Lyapunov functionals, necessary and sufficient conditions ensuring the global stability of the models with delays are given. The obtained results show that, when the basic reproduction number is not greater than one, the infection-free equilibrium is globally stable in the feasible region, which implies that the virus infection goes extinct eventually; when it is greater than one, the infection equilibrium is globally stable in the feasible region, which implies that the virus infection persists in the body of host.  相似文献   

16.
A mathematical model to understand the dynamics of malaria–visceral leishmaniasis co‐infection is proposed and analyzed. Results show that both diseases can be eliminated if R0, the basic reproduction number of the co‐infection, is less than unity, and the system undergoes a backward bifurcation where an endemic equilibrium co‐exists with the disease‐free equilibrium when one of Rm or Rl, the basic reproduction numbers of malaria‐only and visceral leishmaniasis‐only, is precisely less than unity. Results also show that in the case of maximum protection against visceral leishmaniasis (VL), the disease‐free equilibrium is globally asymptotically stable if malaria patients are protected from VL infection; similarly, in the case of maximum protection against malaria, the disease‐free equilibrium is globally asymptotically stable if VL and post‐kala‐azar dermal leishmaniasis patients and the recovered humans after VL are protected from malaria infection. Numerical results show that if Rm and Rl are greater than unity, then we have co‐existence of both disease at an endemic equilibrium, and malaria incidence is higher than visceral leishmaniasis incidence at steady state. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, an SIR epidemic model with saturation incidence and a time delay describing a constant infectious period is investigated. By analyzing the corresponding characteristic equations, the local stability of a disease-free equilibrium and an endemic equilibrium is established. When the basic reproduction number is greater than unity, it is proved that the disease is uniformly persistent in the population, and explicit formulae are obtained to estimate the eventual lower bound of the fraction of infectious individuals. By comparison arguments, it is proved that if the basic reproduction number is less than unity, the disease-free equilibrium is globally asymptotically stable. When the basic reproduction number is greater than unity, by means of an iteration technique, sufficient conditions are derived for the global attractiveness of the endemic equilibrium. Numerical simulations are carried out to illustrate the main results.  相似文献   

18.
In this paper, a stage‐structured SI epidemic model with time delay and nonlinear incidence rate is investigated. By analyzing the corresponding characteristic equations, the local stability of an endemic equilibrium and a disease‐free equilibrium, and the existence of Hopf bifurcations are established. By comparison arguments, it is proved that if the basic reproduction number is less than unity, the disease‐free equilibrium is globally asymptotically stable. If the basic reproduction number is greater than unity, by means of an iteration technique, sufficient conditions are obtained for the global asymptotic stability of the endemic equilibrium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A virus dynamics model with Beddington–DeAngelis functional response and delays is introduced. By analyzing the characteristic equations, the local stability of an infection-free equilibrium and a chronic-infection equilibrium of the model is established. By using suitable Lyapunov functionals and the LaSalle invariance principle, we show that the infection-free equilibrium is globally asymptotically stable if R0?1R0?1 and the chronic-infection equilibrium is globally asymptotically stable if R0>1R0>1. Numerical simulations are also given to explain our results.  相似文献   

20.
In this paper, we propose a new SIV epidemic model with time delay, which also involves both direct and environmental transmissions. For such model, we first introduce the basic reproduction number $\mathscr{R}$ by using the next generation matrix. And then global stability of the equilibria is discussed by means of Lyapunov functionals and LaSalle''s invariance principle for delay differential equations, which shows that the infection-free equilibrium of the system is globally asymptotically stable if $\mathscr{R}<1$ and the epidemic equilibrium of the system is globally asymptotically stable for $\m  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号