首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper, a mathematical model describing the transmission dynamics of an infectious disease with an exposed (latent) period and waning vaccine-induced immunity is investigated. The basic reproduction number is found by applying the method of the next generation matrix. It is shown that the global dynamics of the model is completely determined by the basic reproduction number. By means of appropriate Lyapunov functionals and LaSalle’s invariance principle, it is proven that if the basic reproduction number is less than or equal to unity, the disease-free equilibrium is globally asymptotically stable and the disease fades out; and if the basic reproduction number is greater than unity, the endemic equilibrium is globally asymptotically stable and therefore the disease becomes endemic.  相似文献   

2.
In this paper, an SEIS epidemic model with nonlinear incidence and time delay is investigated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria of the model is established. By using suitable Lyapunov functional and LaSalle's invariance principle, it is shown that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than unity. If the basic reproduction number is greater than unity, by means of an iteration technique, sufficient conditions are derived for the global stability of the endemic equilibrium. Numerical simulations are carried out to illustrate the theoretical results.  相似文献   

3.
In this paper, a stage‐structured SI epidemic model with time delay and nonlinear incidence rate is investigated. By analyzing the corresponding characteristic equations, the local stability of an endemic equilibrium and a disease‐free equilibrium, and the existence of Hopf bifurcations are established. By comparison arguments, it is proved that if the basic reproduction number is less than unity, the disease‐free equilibrium is globally asymptotically stable. If the basic reproduction number is greater than unity, by means of an iteration technique, sufficient conditions are obtained for the global asymptotic stability of the endemic equilibrium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
带有非线性传染率的传染病模型   总被引:1,自引:0,他引:1  
对一类带有非线性传染率的SEIS传染病模型,找到了其基本再生数.借助动力系统极限理论,得到当基本再生数小于1时,无病平衡点是全局渐近稳定的,且疾病最终灭绝.当基本再生数大于1时,无病平衡点是不稳定的,而唯一的地方病平衡点是局部渐近稳定的.应用Fonda定理,得到当基本再生数大于1时疾病一致持续存在.  相似文献   

5.
通过假设被接种者具有部分免疫,建立了一类具有潜伏期和接种的SEIR传染病模型,借助再生矩阵得到了确定此接种模型动力学行为的基本再生数.当基本再生数小于1时,模型只有无病平衡点;当基本再生数大于1时,除无病平衡点外,模型还有唯一的地方病平衡点.借助Liapunov函数,证明了无病平衡点和地方病平衡点的全局稳定性.  相似文献   

6.
In this paper, by investigating an SIR epidemic model with nonlinear incidence, we present a new technique for proving the global stability of the endemic equilibrium, which consists of introducing a variable transformation and constructing a more general Lyapunov function. For the model we obtain the following results. The disease-free equilibrium is globally stable in the feasible region as the basic reproduction number is less than or equal to unity, and the endemic equilibrium is globally stable in the feasible region as the basic reproduction number is greater than unity.The generality of the technique is illustrated by considering certain nonlinear incidences and SIS and SIRS epidemic models.  相似文献   

7.
In this paper, an eco‐epidemiological model with Holling type‐III functional response and a time delay representing the gestation period of the predators is investigated. In the model, it is assumed that the predator population suffers a transmissible disease. The disease basic reproduction number is obtained. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the disease‐free equilibrium and the endemic‐coexistence equilibrium are established, respectively. By using the persistence theory on infinite dimensional systems, it is proved that if the disease basic reproduction number is greater than unity, the system is permanent. By means of Lyapunov functionals and LaSalle's invariance principle, sufficient conditions are obtained for the global stability of the endemic‐coexistence equilibrium, the disease‐free equilibrium and the predator‐extinction equilibrium of the system, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
建立了一类具有分布时滞和非线性发生率的SIR媒介传染病模型,分析得到了决定疾病是否一致持续存在的基本再生数.而且当基本再生数不大于1时,疾病最终灭绝;当基本再生数大于1时,模型存在惟一的地方病平衡点,并且疾病一致持续存在于种群之中.通过构造Lyapunov泛函,证明了在一定条件下地方病平衡点只要存在就全局稳定.同时指出了证明地方病平衡点全局稳定时可适用的Lyapunov泛函的不惟一性.  相似文献   

9.
This is a study of dynamic behavior of an SEIRS epidemic model with time delays. It is shown that disease-free equilibrium is globally stable if the reproduction number is not greater than one. When the reproduction number is greater than 1, it is proved that the disease is uniformly persistent in the population, and explicit formulae are obtained by which the eventual lower bound of the fraction of infectious individuals can be computed. Local stability of endemic equilibrium is also discussed.  相似文献   

10.
In this paper, a delayed Susceptible‐Exposed‐Infectious‐Susceptible (SEIS) infectious disease model with logistic growth and saturation incidence is investigated, where the time delay describes the latent period of the disease. By analyzing corresponding characteristic equations, the local stability of a disease‐free equilibrium and an endemic equilibrium is discussed. The existence of Hopf bifurcations at the endemic equilibrium is established. By using the persistence theory for infinite dimensional dynamic systems, it is proved that if the basic reproduction number is greater than unity, the system is permanent. By means of suitable Lyapunov functionals and LaSalle's invariance principle, sufficient conditions are obtained for the global stability of the disease‐free equilibrium and the endemic equilibrium, respectively. Numerical simulations are carried out to illustrate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
充分考虑人口统计效应、疾病的潜伏期与传播规律的复杂性,研究了一类具有非线性发生率的时滞SIRS传染病模型的动力学行为.通过分析对应的线性化近似系统的特征方程,证明了无病平衡点的局部稳定性.利用Lyapunov-LaSalle不变集原理,当基本再生数R0<1时,证明了无病平衡点是全局渐近稳定的;当R0>1时,得到了地方病平衡点全局渐近稳定的充分条件.所得结论可为人们有效预防和控制传染病传播提供一定的理论依据.  相似文献   

12.
一类带有非线性传染率的SEIS传染病模型的定性分析   总被引:4,自引:0,他引:4  
借助极限理论和Fonda定理,研究了一类既有常数输入率又有因病死亡率的SEIS传染病模型.所考虑模型的传染率是非线性的,并且得到了该模型的基本再生数,当基本再生数小于1时,该模型仅存在唯一的无病平衡点,它是全局渐近稳定的,且疾病最终灭绝.当基本再生数大于1时,该模型除存在不稳定的无病平衡点外,还存在唯一的局部渐近稳定的地方病平衡点,并且疾病一致持续存在.  相似文献   

13.
研究了一类具有饱和发生率及免疫的SEIR,传染病模型、构造适当的Lyapunov泛函并运用时滞微分方程的LaSalle型定理,证明了当基本再生数小于1时,无病平衡点是全局渐进稳定的,当基本再生数大于1时,地方病平衡点存在并且是全局渐近稳定的.  相似文献   

14.
傅金波  陈兰荪 《数学杂志》2016,36(6):1283-1290
本文研究了一类具有垂直传染和接触传染的传染病模型.利用常微分方程定性与稳定性方法,分析了该模型非负平衡点的存在性及其局部稳定性.同时,利用LaSalle不变性原理和通过构造适当的Lyapunov函数,获得了平凡平衡点、无病平衡点和地方病平衡点全局渐近稳定的充分条件.结果表明当基本再生数小于等于1时,所有种群趋于灭绝;当基本再生数大于1和病毒主导再生数小于1时,病毒很快被清除;当基本再生数大于1和病毒主导再生数大于1以及满足一定条件时,病毒持续流行并将成为一种地方病.  相似文献   

15.
In this paper, a homogeneous-mixing population fractional model for human immunodeficiency virus (HIV) transmission, which incorporates anti-HIV preventive vaccines, is proposed. The dynamics of the model indicate that the basic reproduction number being the unity is a strict threshold for disease eradication when there is no vaccine. However, it has been shown that when the efficacy or dosage of vaccines is low, the model exhibits the phenomenon of backward bifurcation, where a stable disease-free equilibrium point (DFE) coexists with a stable endemic equilibrium point (EE) when the associated reproduction number is less than unity. Therefore, driving the basic reproduction number below the unity is not enough to eradicate the disease. A new critical value at the turning point should be deduced as a new threshold of disease eradication. We have generalized the integer LaSalle invariant set theorem into fractional system and given some sufficient conditions for the disease-free equilibrium point being globally asymptotical stability. Mathematical results in this paper suggest that improving the efficiency and dosage of vaccines are all valid methods for the control of disease.  相似文献   

16.
In this paper, the asymptotic behavior of solutions of an autonomous SEIRS epidemic model with the saturation incidence is studied. Using the method of Liapunov–LaSalle invariance principle, we obtain the disease-free equilibrium is globally stable if the basic reproduction number is not greater than one. Moreover, we show that the disease is permanent if the basic reproduction number is greater than one. Furthermore, the sufficient conditions of locally and globally asymptotically stable convergence to an endemic equilibrium are obtained base on the permanence.  相似文献   

17.
An epidemic model with relapse and spatial diffusion is studied. Such a model is appropriate for tuberculosis, including bovine tuberculosis in cattle and wildlife, and for herpes. By using the linearized method, the local stability of each of feasible steady states to this model is investigated. It is proven that if the basic reproduction number is less than unity, the disease-free steady state is locally asymptotically stable; and if the basic reproduction number is greater than unity, the endemic steady state is locally asymptotically stable. By the cross-iteration scheme companied with a pair of upper and lower solutions and Schauder's fixed point theorem, the existence of a traveling wave solution which connects the two steady states is established. Furthermore, numerical simulations are carried out to complement the main results.  相似文献   

18.
In this paper, an HIV-1 infection model with a saturation infection rate and an intracellular delay accounting for the time between viral entry into a target cell and the production of new virus particles is investigated. By analyzing the characteristic equations, the local stability of an infection-free equilibrium and a chronic-infection equilibrium of the model is established. By using suitable Lyapunov functionals and the LaSalle invariant principle, it is proved that if the basic reproduction ratio is less than unity, the infection-free equilibrium is globally asymptotically stable; if the basic reproduction ratio is greater than unity, the chronic-infection equilibrium is globally asymptotically stable.  相似文献   

19.
This paper deals with the global analysis of a dynamical model for the spread of tuberculosis with a general contact rate. The model exhibits the traditional threshold behavior. We prove that when the basic reproduction ratio is less than unity, then the disease-free equilibrium is globally asymptotically stable and when the basic reproduction ratio is great than unity, a unique endemic equilibrium exists and is globally asymptotically stable under certain conditions. The stability of equilibria is derived through the use of Lyapunov stability theory and LaSalle’s invariant set theorem. Numerical simulations are provided to illustrate the theoretical results.  相似文献   

20.
This paper deals with global dynamics of an SIRS epidemic model for infections with non permanent acquired immunity. The SIRS model studied here incorporates a preventive vaccination and generalized non-linear incidence rate as well as the disease-related death. Lyapunov functions are used to show that the disease-free equilibrium state is globally asymptotically stable when the basic reproduction number is less than or equal to one, and that there is an endemic equilibrium state which is globally asymptotically stable when it is greater than one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号