首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Weighted premium calculation principles   总被引:1,自引:0,他引:1  
A prominent problem in actuarial science is to define, or describe, premium calculation principles (pcp’s) that satisfy certain properties. A frequently used resolution of the problem is achieved via distorting (e.g., lifting) the decumulative distribution function, and then calculating the expectation with respect to it. This leads to coherent pcp’s. Not every pcp can be arrived at in this way. Hence, in this paper we suggest and investigate a broad class of pcp’s, which we call weighted premiums, that are based on weighted loss distributions. Different weight functions lead to different pcp’s: any constant weight function leads to the net premium, an exponential weight function leads to the Esscher premium, and an indicator function leads to the conditional tail expectation. We investigate properties of weighted premiums such as ordering (and in particular loading), invariance. In addition, we derive explicit formulas for weighted premiums for several important classes of loss distributions, thus facilitating parametric statistical inference. We also provide hints and references on non-parametric statistical inferential tools in the area.  相似文献   

2.
This paper is concerned with a class of optimal control problems of forward-backward stochastic differential equations. One feature of these problems is that they are in the case of partial information and state equations are coupled at initial time. In terms of a classical convex variational technique, we establish a partial information maximum principle for the foregoing optimization problems. We also work out an example of partial information linear-quadratic optimal control to illustrate the application of the theoretical results; meanwhile, we find a forward-backward stochastic differential filtering equation, which is essentially different from classical forward stochastic filtering equations.  相似文献   

3.
研究了由Teugels鞅和与之独立的多维Brown运动共同驱动的正倒向随机控制系统的最优控制问题. 这里Teugels鞅是一列与L\'{e}vy 过程相关的两两强正交的正态鞅 (见Nualart, Schoutens 在2000年的结果). 在允许控制值域为一非空凸闭集假设下, 采用凸变分法和对偶技术获得了最优控制存在所满足的充分和必要条件. 作为应用, 系统研究了线性正倒向随机系统的二次最优控制问题(简记为FBLQ问题), 通过相应的随机哈密顿系统对最优控制 进行了对偶刻画. 这里的随机哈密顿系统是由Teugels鞅和多维Brown运动共同驱动的线性正倒向随机微分方程, 其由状态方程、伴随方程和最优控制的对偶表示共同来构成.  相似文献   

4.
In this paper, we study a partially observed recursive optimization problem, which is time inconsistent in the sense that it does not admit the Bellman optimality principle. To obtain the desired results, we establish the Kalman–Bucy filtering equations for a family of parameterized forward and backward stochastic differential equations, which is a Hamiltonian system derived from the general maximum principle for the fully observed time-inconsistency recursive optimization problem. By means of the backward separation technique, the equilibrium control for the partially observed time-inconsistency recursive optimization problem is obtained, which is a feedback of the state filtering estimation. To illustrate the applications of theoretical results, an insurance premium policy problem under partial information is presented, and the observable equilibrium policy is derived explicitly.  相似文献   

5.
On reinsurance and investment for large insurance portfolios   总被引:1,自引:0,他引:1  
We consider a problem of optimal reinsurance and investment for an insurance company whose surplus is governed by a linear diffusion. The company’s risk (and simultaneously its potential profit) is reduced through reinsurance, while in addition the company invests its surplus in a financial market. Our main goal is to find an optimal reinsurance-investment policy which minimizes the probability of ruin. More specifically, in this paper we consider the case of proportional reinsurance, and investment in a Black-Scholes market with one risk-free asset (bond, or bank account) and one risky asset (stock). We apply stochastic control theory to solve this problem. It transpires that the qualitative nature of the solution depends significantly on the interplay between the exogenous parameters and the constraints that we impose on the investment, such as the presence or absence of shortselling and/or borrowing. In each case we solve the corresponding Hamilton-Jacobi-Bellman equation and find a closed-form expression for the minimal ruin probability as well as the optimal reinsurance-investment policy.  相似文献   

6.
This paper is concerned with partially-observed optimal control problems for fully-coupled forward-backward stochastic systems. The maximum principle is obtained on the assumption that the forward diffusion coefficient does not contain the control variable and the control domain is not necessarily convex. By a classical spike variational method and a filtering technique, the related adjoint processes are characterized as solutions to forward-backward stochastic differential equations in finite-dimensional spaces. Then, our theoretical result is applied to study a partially-observed linear-quadratic optimal control problem for a fully-coupled forward-backward stochastic system and an explicit observable control variable is given.  相似文献   

7.
We consider the dividend payments of a self-financing firm in the stochastic Ramsey model. The firm invests in capital stock and its production technology is given by the Cobb–Douglas function. Our objective is to maximize the expected present value of future real dividends subject to a positive constraint on the capital stock. We use the penalization method to obtain a solution for the variational inequality associated with the optimal growth problem and give a synthesis of the optimal dividend policy.  相似文献   

8.
The paper is concerned with a stochastic optimal control problem in which the controlled system is described by a fully coupled nonlinear forward-backward stochastic differential equation driven by a Brownian motion. It is required that all admissible control processes are adapted to a given subfiltration of the filtration generated by the underlying Brownian motion. For this type of partial information control, one sufficient (a verification theorem) and one necessary conditions of optimality are proved. The control domain need to be convex and the forward diffusion coefficient of the system can contain the control variable. This work was partially supported by Basic Research Program of China (Grant No. 2007CB814904), National Natural Science Foundation of China (Grant No. 10325101) and Natural Science Foundation of Zhejiang Province (Grant No. Y605478, Y606667)  相似文献   

9.
The authors prove a sufficient stochastic maximum principle for the optimal control of a forward-backward Markov regime switching jump diffusion system and show its connection to dynamic programming principle. The result is applied to a cash flow valuation problem with terminal wealth constraint in a financial market. An explicit optimal strategy is obtained in this example.  相似文献   

10.
给出一类正倒向随机微分方程解的存在唯一性结果,应用这个结果研究了一类新的推广的随机线性二次最优控制器的设计问题,得到了由正倒向随机微分方程解所表示的唯一最优控制器的显式结构;在推广的Riccati方程系统基础上,得到最优控制器精确的线性反馈形式.最后,给出了随机线性二次最优控制器的设计算法.  相似文献   

11.
This paper investigates an investment-reinsurance problem for an insurance company that has a possibility to choose among different business activities, including reinsurance/new business and security investment. Our main objective is to find the optimal policy to minimize its probability of ruin. The main novelty of this paper is the introduction of a dynamic Value-at-Risk (VaR) constraint. This provides a way to control risk and to fulfill the requirement of regulators on market risk. This problem is formulated as an infinite horizontal stochastic control problem with a constrained control space. The dynamic programming technique is applied to derive the Hamilton-Jacobi-Bellman (HJB) equation and the Lagrange multiplier method is used to tackle the dynamic VaR constraint. Closed-form expressions for the minimal ruin probability as well as the optimal investment-reinsurance/new business policy are derived. It turns out that the risk exposure of the insurance company subject to the dynamic VaR constraint is always lower than otherwise. Finally, a numerical example is given to illustrate our results.  相似文献   

12.
Inspired by the successful applications of the stochastic optimization with second order stochastic dominance (SSD) model in portfolio optimization, we study new numerical methods for a general SSD model where the underlying functions are not necessarily linear. Specifically, we penalize the SSD constraints to the objective under Slater’s constraint qualification and then apply the well known stochastic approximation (SA) method and the level function method to solve the penalized problem. Both methods are iterative: the former requires to calculate an approximate subgradient of the objective function of the penalized problem at each iterate while the latter requires to calculate a subgradient. Under some moderate conditions, we show that w.p.1 the sequence of approximated solutions generated by the SA method converges to an optimal solution of the true problem. As for the level function method, the convergence is deterministic and in some cases we are able to estimate the number of iterations for a given precision. Both methods are applied to portfolio optimization problem where the return functions are not necessarily linear and some numerical test results are reported.  相似文献   

13.
本文研究约束折扣半马氏决策规划问题,即在一折扣期望费用约束下,使折扣期望报酬达最大的约束最优问题,假设状态集可数,行动集为紧的非空Borel集,本文给出了p-约束最优策略的充要条件,证明了在适当的假设条件下必存在p-约束最优策略。  相似文献   

14.
In this paper,we consider an optimal control problem with state constraints,where the control system is described by a mean-field forward-backward stochastic differential equation(MFFBSDE,for short)and the admissible control is mean-field type.Making full use of the backward stochastic differential equation theory,we transform the original control system into an equivalent backward form,i.e.,the equations in the control system are all backward.In addition,Ekeland’s variational principle helps us deal with the state constraints so that we get a stochastic maximum principle which characterizes the necessary condition of the optimal control.We also study a stochastic linear quadratic control problem with state constraints.  相似文献   

15.
We study a kind of partial information non-zero sum differential games of mean-field backward doubly stochastic differential equations, in which the coefficient contains not only the state process but also its marginal distribution, and the cost functional is also of mean-field type. It is required that the control is adapted to a sub-filtration of the filtration generated by the underlying Brownian motions. We establish a necessary condition in the form of maximum principle and a verification theorem, which is a sufficient condition for Nash equilibrium point. We use the theoretical results to deal with a partial information linear-quadratic (LQ) game, and obtain the unique Nash equilibrium point for our LQ game problem by virtue of the unique solvability of mean-field forward-backward doubly stochastic differential equation.  相似文献   

16.
Using the decomposition of solution of SDE, we consider the stochastic optimal control problem with anticipative controls as a family of deterministic control problems parametrized by the paths of the driving Wiener process and of a newly introduced Lagrange multiplier stochastic process (nonanticipativity equality constraint). It is shown that the value function of these problems is the unique global solution of a robust equation (random partial differential equation) associated to a linear backward Hamilton-Jacobi-Bellman stochastic partial differential equation (HJB SPDE). This appears as limiting SPDE for a sequence of random HJB PDE's when linear interpolation approximation of the Wiener process is used. Our approach extends the Wong-Zakai type results [20] from SDE to the stochastic dynamic programming equation by showing how this arises as average of the limit of a sequence of deterministic dynamic programming equations. The stochastic characteristics method of Kunita [13] is used to represent the value function. By choosing the Lagrange multiplier equal to its nonanticipative constraint value the usual stochastic (nonanticipative) optimal control and optimal cost are recovered. This suggests a method for solving the anticipative control problems by almost sure deterministic optimal control. We obtain a PDE for the “cost of perfect information” the difference between the cost function of the nonanticipative control problem and the cost of the anticipative problem which satisfies a nonlinear backward HJB SPDE. Poisson bracket conditions are found ensuring this has a global solution. The cost of perfect information is shown to be zero when a Lagrangian submanifold is invariant for the stochastic characteristics. The LQG problem and a nonlinear anticipative control problem are considered as examples in this framework  相似文献   

17.
This paper investigates the optimal time-consistent policies of an investment-reinsurance problem and an investment-only problem under the mean-variance criterion for an insurer whose surplus process is approximated by a Brownian motion with drift. The financial market considered by the insurer consists of one risk-free asset and multiple risky assets whose price processes follow geometric Brownian motions. A general verification theorem is developed, and explicit closed-form expressions of the optimal polices and the optimal value functions are derived for the two problems. Economic implications and numerical sensitivity analysis are presented for our results. Our main findings are: (i) the optimal time-consistent policies of both problems are independent of their corresponding wealth processes; (ii) the two problems have the same optimal investment policies; (iii) the parameters of the risky assets (the insurance market) have no impact on the optimal reinsurance (investment) policy; (iv) the premium return rate of the insurer does not affect the optimal policies but affects the optimal value functions; (v) reinsurance can increase the mean-variance utility.  相似文献   

18.
This paper considers utility indifference valuation of derivatives under model uncertainty and trading constraints, where the utility is formulated as an additive stochastic differential utility of both intertemporal consumption and terminal wealth, and the uncertain prospects are ranked according to a multiple-priors model of Chen and Epstein (2002). The price is determined by two optimal stochastic control problems (mixed with optimal stopping time in the case of American option) of forward-backward stochastic differential equations. By means of backward stochastic differential equation and partial differential equation methods, we show that both bid and ask prices are closely related to the Black-Scholes risk-neutral price with modified dividend rates. The two prices will actually coincide with each other if there is no trading constraint or the model uncertainty disappears. Finally, two applications to European option and American option are discussed.  相似文献   

19.
On a multivariate Pareto distribution   总被引:2,自引:0,他引:2  
A multivariate distribution possessing arbitrarily parameterized Pareto margins is formulated and studied. The distribution is believed to allow for an adequate modeling of dependent heavy tailed risks with a non-zero probability of simultaneous loss. Numerous links to certain existing probabilistic models, as well as seemingly useful characteristic results are proved. Expressions for, e.g., decumulative distribution functions, densities, (joint) moments and regressions are developed. An application to the classical pricing problem is considered, and some formulas are derived using the recently introduced economic weighted premium calculation principles.  相似文献   

20.
The motivation for our study comes from some production and inventory systems in which ordering/producing quantities that exceed certain thresholds in a given period might eliminate some setup activities in the next period. Many examples of such systems have been discussed in prior research but the analysis has been limited to production settings under deterministic demand. In this paper, we consider a periodic-review production-inventory model under stochastic demand and incorporate the following fixed-cost structure into our analysis. When the order quantity in a given period exceeds a specified threshold value, the system is assumed to be in a “warm” state and no fixed cost is incurred in the next period regardless of the order quantity; otherwise the system state is considered “cold” and a positive fixed cost is required to place an order. Assuming that the unsatisfied demand is lost, we develop a dynamic programming formulation of the problem and utilize the concepts of quasi-K-convexity and non-K-decreasing to show some structural results on the optimal cost-to-go functions. This analysis enables us to derive a partial characterization of the optimal policy under the assumption that the demands follow a Pólya or uniform distribution. The optimal policy is defined over multiple decision regions for each system state. We develop heuristic policies that are aimed to address the partially characterized decisions, simplify the ordering policy, and save computational efforts in implementation. The numerical experiments conducted on a large set of test instances including uniform, normal and Poisson demand distributions show that a heuristic policy that is inspired by the optimal policy is able to find the optimal solution in almost all instances, and that a so-called generalized base-stock policy provides quite satisfactory results under reasonable computational efforts. We use our numerical examples to generate insights on the impact of problem parameters. Finally, we extend our analysis into the infinite horizon setting and show that the structure of the optimal policy remains similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号