首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traditional integer‐order partial differential equation based image denoising approach can easily lead edge and complex texture detail blur, thus its denoising effect for texture image is always not well. To solve the problem, we propose to implement a fractional partial differential equation (FPDE) based denoising model for texture image by applying a novel mathematical method—fractional calculus to image processing from the view of system evolution. Previous studies show that fractional calculus has some unique properties that it can nonlinearly enhance complex texture detail in digital image processing, which is obvious different with integer‐order differential calculus. The goal of the modeling is to overcome the problems of the existed denoising approaches by utilizing the aforementioned properties of fractional differential calculus. Using classic definition and property of fractional differential calculus, we extend integer‐order steepest descent approach to fractional field to implement fractional steepest descent approach. Then, based on the earlier fractional formulas, a FPDE based multiscale denoising model for texture image is proposed and further analyze optimal parameters value for FPDE based denoising model. The experimental results prove that the ability for preserving high‐frequency edge and complex texture information of the proposed fractional denoising model are obviously superior to traditional integral based algorithms, as for texture detail rich images. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
张海  赵小文  蒋威 《数学杂志》2011,31(1):91-95
本文研究了系数矩阵不是方阵情形的分数阶一般退化微分系统的解.通过定义可解阵对,获得分数阶一般退化微分系统的通解表达式.该结果推广了整数阶退化微分系统和分数阶常微分系统解的相应结论.  相似文献   

3.
The aim of the present paper is to obtain an integral representation of the solution of the Cauchy problem with discontinuous and continuous initial conditions for linear fractional differential system with Caputo-type derivatives and distributed delay. The obtained results are new even in the particular case of fractional system with constant delays.  相似文献   

4.
This paper aims to formulate the fractional quasi‐inverse scattering method. Also, we give a positive answer to the following question: can the Ablowitz‐Kaup‐Newell‐Segur (AKNS) method be applied to the space–time fractional nonlinear differential equations? Besides, we derive the Bäcklund transformations for the fractional systems under study. Also, we construct the fractional quasi‐conservation laws for the considered fractional equations from the defined fractional quasi AKNS‐like system. The nonlinear fractional differential equations to be studied are the space–time fractional versions of the Kortweg‐de Vries equation, modified Kortweg‐de Vries equation, the sine‐Gordon equation, the sinh‐Gordon equation, the Liouville equation, the cosh‐Gordon equation, the short pulse equation, and the nonlinear Schrödinger equation.  相似文献   

5.
In this paper, the ‐expansion method is proposed to establish hyperbolic and trigonometric function solutions for fractional differential‐difference equations with the modified Riemann–Liouville derivative. The fractional complex transform is proposed to convert a fractional partial differential‐difference equation into its differential‐difference equation of integer order. We obtain the hyperbolic and periodic function solutions of the nonlinear time‐fractional Toda lattice equations and relativistic Toda lattice system. The proposed method is more effective and powerful for obtaining exact solutions for nonlinear fractional differential–difference equations and systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, we deal with the existence of the fractional integrable equations involving two generalized symmetries compatible with nonlinear systems. The method used is based on the Bä cklund transformation or B‐transformation. Furthermore, we shall factorize the fractional heat operator in order to yield the fractional Riccati equation. This is done by utilizing matrix transform Miura type and matrix operators, that is, matrices whose entries are differential operators of fractional order. The fractional differential operator is taken in the sense of Riemann–Liouville calculus. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The paper provides the fractional integrals and derivatives of the Riemann‐Liouville and Caputo type for the five kinds of radial basis functions, including the Powers, Gaussian, Multiquadric, Matérn, and Thin‐plate splines, in one dimension. It allows to use high‐order numerical methods for solving fractional differential equations. The results are tested by solving two test problems. The first test case focuses on the discretization of the fractional differential operator while the second considers the solution of a fractional order differential equation.  相似文献   

8.
李宝凤 《数学杂志》2015,35(6):1353-1362
本文研究了一类变系数分数阶微分方程的数值解法问题. 利用Cheyshev小波推导出的分数阶微分方程的算子矩阵把分数阶微分方程转换为代数方程组. 同时给出了Cheyshev小波基的收敛性和误差估计表达式, 并给出数值算例说明所提方法的精确性和有效性  相似文献   

9.
10.
本文研究了常系数线性分数阶微分方程组的求解问题.利用逆Laplace变换,Jordan标准矩阵和最小多项式,得到矩阵变量Mittag-Leffler函数的三种不同的计算方法,包含了常系数线性一阶微分方程组的解.  相似文献   

11.
By the rapid growth of available data, providing data-driven solutions for nonlinear (fractional) dynamical systems becomes more important than before. In this paper, a new fractional neural network model that uses fractional order of Jacobi functions as its activation functions for one of the hidden layers is proposed to approximate the solution of fractional differential equations and fractional partial differential equations arising from mathematical modeling of cognitive-decision-making processes and several other scientific subjects. This neural network uses roots of Jacobi polynomials as the training dataset, and the Levenberg-Marquardt algorithm is chosen as the optimizer. The linear and nonlinear fractional dynamics are considered as test examples showing the effectiveness and applicability of the proposed neural network. The numerical results are compared with the obtained results of some other networks and numerical approaches such as meshless methods. Numerical experiments are presented confirming that the proposed model is accurate, fast, and feasible.  相似文献   

12.
In this work, we present numerical analysis for nonlinear multi‐term time fractional differential equation which involve Caputo‐type fractional derivatives for . The proposed method is based on utilization of fractional B‐spline basics in collocation method. The scheme can be readily obtained efficient and quite accurate with less computational work numerical result. The proposal approach transform nonlinear multi‐term time fractional differential equation into a suitable linear system of algebraic equations which can be solved by a suitable numerical method. The numerical experiments will be verify to demonstrate the effectiveness of our method for solving one‐ and two‐dimensional multi‐term time fractional differential equation.  相似文献   

13.
Fractional calculus has been used to model physical and engineering processes that are found to be best described by fractional differential equations. For that reason we need a reliable and efficient technique for the solution of fractional differential equations. Here we construct the operational matrix of fractional derivative of order α in the Caputo sense using the linear B-spline functions. The main characteristic behind the approach using this technique is that it reduces such problems to those of solving a system of algebraic equations thus we can solve directly the problem. The method is applied to solve two types of fractional differential equations, linear and nonlinear. Illustrative examples are included to demonstrate the validity and applicability of the new technique presented in the current paper.  相似文献   

14.
分数阶微分方程的比较定理   总被引:3,自引:0,他引:3  
本文给出了非线性Riemann—Liouville分数阶微分方程和Caputo分数阶微分方程与相应的非线性Volterra积分方程的等价性,并在此基础上建立了分数阶微分方程的比较定理.  相似文献   

15.
研究分数阶微分方程组边值问题在一类新型的边界条件——分数阶分离边界条件下解的存在性.通过将微分方程组边值问题转化为与之等价的积分方程组,利用Banach不动点定理和Leray-Schauder非线性更替得到边值问题解存在的充分条件,并给出两个例子说明了主要结论.  相似文献   

16.
讨论了基于Caputo导数的Miller-Ross序列导数的分数阶微分方程的稳定性.根据Laplace变换,得到分数阶微分方程的解;应用Mittag-Leffler函数的渐近展开,讨论了方程的稳定性.分两部分:齐次方程与非齐次方程.  相似文献   

17.
The concept of uncertain fractional differential equation is introduced, and solutions of several uncertain fractional differential equations are presented. This kind of equation is a counterpart of stochastic fractional differential equation. By the proposed concept, an interest rate model is considered, and the price of a zero‐coupon bond is obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
第一部分,介绍分数阶导数的定义和著名的Mittag—Leffler函数的性质.第二部分,利用单调迭代方法给出了具有2序列Riemann—Liouville分数阶导数微分方程初值问题解的存在性和唯一性.第三部分,利用上下解方法和Schauder不动点定理给出了具有2序列Riemann—Liouville分数阶导数微分方程周期边值问题解的存在性.第四部分,利用Leray—Schauder不动点定理和Banach压缩映像原理建立了具有n序列Riemann—Liouville分数阶导数微分方程初值问题解的存在性、唯一性和解对初值的连续依赖性.第五部分,利用锥上的不动点定理给出了具有Caputo分数阶导数微分方程边值问题,在超线性(次线性)条件下C310,11正解存在的充分必要条件.最后一部分,通过建立比较定理和利用单调迭代方法给出了具有Caputo分数阶导数脉冲微分方程周期边值问题最大解和最小解的存在性.  相似文献   

19.
In this article, numerical study for both nonlinear space‐fractional Schrödinger equation and the coupled nonlinear space‐fractional Schrödinger system is presented. We offer here the weighted average nonstandard finite difference method (WANSFDM) as a novel numerical technique to study such kinds of partial differential equations. The space fractional derivative is described in the sense of the quantum Riesz‐Feller definition. Stability analysis of the proposed method is studied. To show that this method is reliable and computationally efficient different numerical examples are provided. We expect that the proposed schemes can be applicable to different systems of fractional partial differential equations. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1399–1419, 2017  相似文献   

20.
This paper deals with constructing generalized ‘fractional’ power series representation for solutions of fractional order differential equations. We present a brief review of generalized Taylor's series and generalized differential transform methods. Then, we study the convergence of fractional power series. Our emphasis is to address the sufficient condition for convergence and to estimate the truncated error. Numerical simulations are performed to estimate maximum absolute truncated error when the generalized differential transform method is used to solve non‐linear differential equations of fractional order. The study highlights the power of the generalized differential transform method as a tool in obtaining fractional power series solutions for differential equations of fractional order. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号