首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Let Z_n={z_(kn)=cosθ_(kn):θ_(kn)=(2k-1)/(2n)π,k=1,2…,n}be the zeros of T_n(x)=cosnθ(x=cosθ,θ∈[0,π]).For 0≤ε≤1,let α_n=:α_n(ε)=:cos(1-ε)/(2n)π,β_n=:β_n(ε)=:cos(2n-1+ε)/(2n)π=-α_n,X_n~(1)=(Z_n-{z_(1z)})∪{α_n},X_n~(2)=(Zn-{z_(nn)})∪{β_n},X_n~(3)=(Z_n-{z_(1n),z_(nn)})∪{α_n,β_n},Y_n~(1)=Z_n∪{α_n},Y_n~(2)=Z_n∪{β_n},Y_n~(3)=Z_n∪{α_nβ_n}.  相似文献   

2.
§1 引言数列 f=f~(1),f~(2),…,f~(n),…}称为,一序列,如果f~(i)≥0(i≥1);sum from t=1 to ∞ f~(i)≤1 (1)由产生的更新序列 u-{u_0;u_1,u_2,…,u_n,…}依下式定义(2)更新序列与马氏链关系密切。设 X(n)是离散参数马氏链,其(一步)转移矩阵为P=(P_(ij))_(i,j∈E),(E 为可列集) (3)又记 n 步转移矩阵为 P~((n))=(P_(ij)~((n)))_(i,j∈E),则P~((0))=(单位矩阵),P~((1))=P,P~((n))=P~n (4)这时,对每个 i∈E,数列{P_(i)~((n))}_(n≥0)是更新序列,其所有产生的 f-序列为{f_i~((n))}+_(n≥1):  相似文献   

3.
重截断和的渐近分布   总被引:1,自引:0,他引:1  
设{X_n,n≥1}是i.i.d.随机变量序列,X_n,1≤…≤X_(n,n)是X_1,…,X_n的次序统计量。又设k_(n,1,) k_(n,2)是满足条件1≤k_(n,1)相似文献   

4.
设K是一致凸Banach空间中的非空闭凸子集,T_i:K→K(i=1,2,…,N)是有限族完全渐近非扩张映象.对任意的x_0∈K,具误差的隐迭代序列{x_n}为:x_n=α_nx_n-1+β_nT_n~kx_n+γ_nu_n,n≥1,其中{α_n},{β_n},{γ_n}■[0,1]满足α_n+β_n+γ_n=1,{u_n}是K中的有界序列.在一定的条件下,该文建立了隐迭代序列{x_n}的强收敛性.得到隐迭代序列{x_n}强收敛于有限族完全渐近非扩张映象公共不动点的充要条件.所得结果改进和推广了Shahzad与Zegeye,Zhou与Chang,Chang,Tan,Lee与Chan等人的相应结果.  相似文献   

5.
关于平稳序列中心秩顺序统计量联合分布的稳定收敛性   总被引:1,自引:0,他引:1  
§1.引言 设{ξ_n}是平稳序列,ξ_1~(n)≤ξ_2~(n)≤…≤ξ_n~(n)是ξ_1,…,ξ_n的顺序统计量,则称{ξ_(kn)~(n)}{ξ_n}的具有秩序列{k_n}的顺序统计量序列。记λ_n=k_n/n和?_n={nλ_n·(1-λ_n}~(1/2),如果min{k_n,n-k_n}→∞或等价地?_n→∞就称{k_n}为变秩序列。  相似文献   

6.
刘名生  朱玉灿 《中国科学A辑》2007,37(10):1193-1206
在$\C^n$中的有界完全Reinhardt域$\Omega$上推广的Roper-Suffridge算子$\Phi(f)$定义为 \begin{eqnarray*} \Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)(z)\!=\!\Big(rf\Big(\frac{z_1}{r}\Big), \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_2}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_2}z_2,\ldots, \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_n}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_n}z_n \Big), \end{eqnarray*} 其中 $n\geq2$, $(z_1, z_2,\ldots, z_n)\in \Omega$, $r=r(\Omega)=\sup\{|z_1|: (z_1, z_2,\ldots, z_n)\in \Omega\}, 0\leq \gamma_j\leq 1-\beta_j, 0\leq \beta_j\leq 1$, 这里选取幂函数的单值解析分支, 使得 $(\frac{f(z_1)}{z_1})^{\beta_j}|_{z_1=0}= 1$ 和 $(f’(z_1))^{\gamma_j}|_{z_1=0}=1, j=2,\ldots, n$. 证明了 $\Omega$上的算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 是将 $S^*_\alpha(U)$ 的子集映入$S^*_\alpha\,(\Omega)\,(0\leq \alpha<1)$, 且对于一些合适的常数 $\beta_j, \gamma_j, p_j$, $D_p$上的这个算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 保持$\alpha$阶星形性或保持$\beta$ 型螺形性, 其中 $ D_p=\bigg\{(z_1, z_2,\ldots, z_n)\in \C^n: \he{j=1}{n}|z_j|^{p_j}<1\bigg\},\quad p_j>0, j=1, 2,\ldots, n, $ $U$是复平面$\C$上的单位圆, $S^*_\alpha(\Omega)$ 是 $\Omega$ 上所有正规化$\alpha$阶星形映射所成的类. 也得到: 对于某些合适的常数 $\beta_j, \gamma_j, p_j$ 和 在$\C^n$中的有界完全Reinhardt域$\Omega$上推广的Roper-Suffridge算子$\Phi(f)$定义为 \begin{eqnarray*} \Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)(z)\!=\!\Big(rf\Big(\frac{z_1}{r}\Big), \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_2}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_2}z_2,\ldots, \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_n}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_n}z_n \Big), \end{eqnarray*} 其中 $n\geq2$, $(z_1, z_2,\ldots, z_n)\in \Omega$, $r=r(\Omega)=\sup\{|z_1|: (z_1, z_2,\ldots, z_n)\in \Omega\}, 0\leq \gamma_j\leq 1-\beta_j, 0\leq \beta_j\leq 1$, 这里选取幂函数的单值解析分支, 使得 $(\frac{f(z_1)}{z_1})^{\beta_j}|_{z_1=0}= 1$ 和 $(f’(z_1))^{\gamma_j}|_{z_1=0}=1, j=2,\ldots, n$. 证明了 $\Omega$上的算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 是将 $S^*_\alpha(U)$ 的子集映入$S^*_\alpha\,(\Omega)\,(0\leq \alpha<1)$, 且对于一些合适的常数 $\beta_j, \gamma_j, p_j$, $D_p$上的这个算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 保持$\alpha$阶星形性或保持$\beta$ 型螺形性, 其中 $ D_p=\bigg\{(z_1, z_2,\ldots, z_n)\in \C^n: \he{j=1}{n}|z_j|^{p_j}<1\bigg\},\quad p_j>0, j=1, 2,\ldots, n, $ $U$是复平面$\C$上的单位圆, $S^*_\alpha(\Omega)$ 是 $\Omega$ 上所有正规化$\alpha$阶星形映射所成的类. 也得到: 对于某些合适的常数 $\beta_j, \gamma_j, p_j$ 和 在C~n中的有界完全Reinhardt域Ω上推广的Roper-Suffridge算子Φ(f)定义为Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)(z)=(rf(z_1/r),((rf(z_1/r))/z_1)~(β_2)(f′(z_1/r))~γ_2_(z_2,…,)((rf(z_1/r))/z_1)~(β_n)(f′(z_1/r))~(γ_n)_(z_n),其中n≥2,(z_1,z_2,…,z_n)∈Ω,r=r(Ω)=sup{|z_1|:(z_1,z_2,…,z_n)∈Ω},0≤γ_j≤1-β_j,0≤β_j≤1,这里选取幂函数的单值解析分支,使得((f(z_1))/z_1)~(β_j)|_(z_1=0)=1和(f′(z_1))~(γ_j)|_(z_1=0)=1,j= 2,…,n.证明了Ω上的算子Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)是将S_α~*(U)的子集映入S_α~*(Ω)(0≤α<1),且对于一些合适的常数β_j,γ_j,p_j,D_p上的这个算子Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)保持α阶星形性或保持β型螺形性,其中(?) U是复平面C上的单位圆,S_α~*(Ω)是Ω上所有正规化α阶星形映射所成的类.也得到:对于某些合适的常数β_j,γ_j,p_j和0≤α<1,Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)∈S_α~*(D_p)当且仅当f∈S_α~*(U).  相似文献   

7.
设E是具弱序列连续对偶映像自反Banach空间, C是E中闭凸集, T:C→ C是具非空不动点集F(T)的非扩张映像.给定u∈ C,对任意初值x0∈ C,实数列{αn}n∞=0,{βn}∞n=0∈ (0,1),满足如下条件:(i)sum from n=α to ∞α_n=∞, α_n→0;(ii)β_n∈[0,α) for some α∈(0,1);(iii)sun for n=α to ∞|α_(n-1) α_n|<∞,sum from n=α|β_(n-1)-β_n|<∞设{x_n}_(n_1)~∞是由下式定义的迭代序列:{y_n=β_nx_n (1-β_n)Tx_n x_(n 1)=α_nu (1-α_n)y_n Then {x_n}_(n=1)~∞则{x_n}_(n=1)~∞强收敛于T的某不动点.  相似文献   

8.
非平稳高斯序列的极值之渐近分布   总被引:3,自引:1,他引:2  
设{ξ_n}是一非平稳高斯序列,Eξ_n=0、Eξ_n~2=1及γ_(ij)=Eξ_iξ_j.以M_n记max ξ_k,以记公共分布是F(x)=/(2π)~(1/2) integral from n=-∞ to x(e~(-u~2/2))du的 i.i.d序列之前n个变量的最大值.已有如下结果:对所述非平稳高斯序列{ξ_n}若  相似文献   

9.
考虑线性模型y_j=x′β+e_j,j=1,2,…,n,假定误差序列{e_j}为ⅱd,随机变量序列,满足Ee_1=0,00,n→∞; (ⅱ)对任何ε>0,n→∞; (ⅲ) 这个结果与{Y_j}为独立同分布场合完全一致。  相似文献   

10.
摘要设X_1,X_2,…为iid.,EX_1=0,0相似文献   

11.
设{x_n,n≥1}是i.i.d.序列,分布函数具有形式F(x)=1-(L(x))/(x~(1/O)),x>0,其中L(x)是缓慢变化函数,0相似文献   

12.
本文考虑随机幂级数:f(z,ω)=sum from n=0 to ∞ a_n e~(iω_n)z~n (1.1)其中 a_n≥0(n=0,1,…),{ω_n}是概率空间(Ω,(?),P)上的 steinhaus 序列。我们给出了f(z,ω)a.s.属于 α-Bloch 函数类(?)~α,(?)_0~α的条件,当α=1时,得出[1]中相应的结果。  相似文献   

13.
<正>1引言多年来,众多数学工作者在推导和分析如下定义的逆特征值问题(IEP)的理论和算法上表现出了相当大的兴趣.以下我们设c=(c_1,c_2,….c_n)~T E R~n,{A_i}_(i=1)~n是n个实对称的n×n矩阵.定义A(c)=∑ni=1c_iA_i.(1)设A(c)的特征值为{λ_i(c)}_(i=1)~n且λ_1(c)≤λ_2(c)≤…≤λ_n(c).设{λ_i~*)_(i=1)~n为任意给定的n个数并且满足λ_1~*≤λ_2~*≤…≤λ_n~*.我们这里考虑的IEP就是寻找向量c~*∈R~n使得λ_i(c~*)=λ_i~*对任意的i=1,2,…,n.(2)  相似文献   

14.
一 伪单调数列 定义1 设非负数列{ε_n}具有如下性质:“满足 a_(n+1)≤a_n+ε_n,n=1,2,… (1)且有下界的任意数列{a_n}必收敛”,则称数列{ε_n}具有“性质M”。 定理1 非负数列{ε_n}具有性质M的充要条件是级数sum from n=1 to ∞(ε_n)收敛。证 必要性:设非负数列{ε_n}具有性质M,取数列{a_(1n)}为  相似文献   

15.
设f(x)∈C_(2π)。而f(x)~sum from k=0 ( )A_k(f_1k)≡α_0/2 sum from k=1 ( )(α_kcoskx b_ksinkx)。 又设 U_n(f,x)=1/πintegral from -πto π(f(x t)u_n(t)dt,) 其中u_n(t)=1/2 sum from k=1ρ_k~(n)coskt满足条件: integral from 0 to k(|u_n(t)|dt=O(1),)ρ_k~(n)→1(n→∞;k=1,2,…,)。设m是正整数,ρ_0~(n)=1。记~mρ_k~(n)=sum form v=0 to ∞ ((-1)~(m~(-v))(m v)ρ_k v~(n) (k=0,1,…,)。)T.Nishishiraho考虑了在ρ_k~(n)=O(k>n)的情况下U_n(f,x)的饱和问题,证明了。 定理A 设{_n}是收敛于0的正数列,使得  相似文献   

16.
设E是一致光滑的Banach空间,A:D(A)E→2~E是一个满足值域条件的增生算子,进一步满足线性增长条件:‖Ax‖≤C(1+‖x‖)对某个常数C0, x∈D(A).设z∈D(A)是任意固定元,x_1∈D(A), A~(-1)0≠Φ.定义序列{x_n}D(A)如下:x_(n+1)∈x_n-λ_n(Ax_n+θ_n(x_n-z+e_n)),n≥1,其中{λ_n}与{θ_n}是满足一定条件的非负数列.则x_n→x~*∈A~(-1)(0),(n→∞).作为应用,我们推出构造连续伪压缩映像的不动点的收敛定理.  相似文献   

17.
一类最优停止问题的解   总被引:1,自引:0,他引:1  
Let {Z_i} be i.i.d.,and {ε_i} be i.i.d.,Bernoulli variables independent of {Z_i}.Set To≡z and T_n=ε_n(T_(n-1)-Z_n)for n≥1.Using Wiener-Hopf type equations,we give a newapproch to find optimal stopping rules for stopping T_n-nC,Where C>O.Special casesare nsidered in detail,some of them are difficult to treat by Ferguson's method.  相似文献   

18.
设(ξ_n,n≥0)是状态空间为{l,2,…,s}的不可约马尔可夫链,其转移概率矩阵是P.用v_(ni)表示在ξ_1,ξ_2,…,ξ_n中状态i出现的次数(i=1,2,…,s).用(q_1,…,q_2)表示对应于P的唯一平稳分布.设a_1,…,a_s是满足条件 q_1a_1 q_2a_2 … q_sa_s=0的任意实数. 在本文中,我们求出了v_(n1),…,v_(ns)的矩母函数,给出了1/n~(1/2) sum from 1 to 8 a_i v_ni及(v_n1-nq1)/n~(1/2),…,v_(ns)—nq_s/n~(1/2))的极限分布的明显表达式(当n→∞时)。一些有关的结果也得到了。  相似文献   

19.
设{X_n,n≥1}是 i.i.d.序列,分布函数具有形式 F(x)=1-,x>0,其中 L(x)是缓慢变化函数,0相似文献   

20.
鞅型序列的变换及其收敛性   总被引:8,自引:0,他引:8  
甘师信 《数学杂志》1991,11(3):275-286
本文证明了(1)设 Banach 空间 B 为 P 阶光滑的(1≤P≤2),X=(X_n,(?)_n,n≥1)为B 值鞅,v=(v_n,(?)_n,n≥1)为实值可予报序列,鞅变换 Y=(sum from i=1 to n V_i(X_i-X_(i-1)),(?)_n,n≥1)在一定的条件下具有 a.e.收敛性,L~p 收敛性及强(弱)大多数定律成立。(2)Banach空间 B 具有 Radon-Nikodym 性质,X=(X_n,(?)_n,n≥1)为 B 值依概极限鞅,实值可予报序列 V=(V_n,(?)_n,n≥1)满足 sum from i=1 to ∞ E(|V_i|~p)~(1/p)<∝,1相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号