首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigate the optimal time-consistent investment–reinsurance strategies for an insurer with state dependent risk aversion and Value-at-Risk (VaR) constraints. The insurer can purchase proportional reinsurance to reduce its insurance risks and invest its wealth in a financial market consisting of one risk-free asset and one risky asset, whose price process follows a geometric Brownian motion. The surplus process of the insurer is approximated by a Brownian motion with drift. The two Brownian motions in the insurer’s surplus process and the risky asset’s price process are correlated, which describe the correlation or dependence between the insurance market and the financial market. We introduce the VaR control levels for the insurer to control its loss in investment–reinsurance strategies, which also represent the requirement of regulators on the insurer’s investment behavior. Under the mean–variance criterion, we formulate the optimal investment–reinsurance problem within a game theoretic framework. By using the technique of stochastic control theory and solving the corresponding extended Hamilton–Jacobi–Bellman (HJB) system of equations, we derive the closed-form expressions of the optimal investment–reinsurance strategies. In addition, we illustrate the optimal investment–reinsurance strategies by numerical examples and discuss the impact of the risk aversion, the correlation between the insurance market and the financial market, and the VaR control levels on the optimal strategies.  相似文献   

2.
The optimal reinsurance contract is investigated from the perspective of an insurer who would like to minimise its risk exposure under Solvency II. Under this regulatory framework, the insurer is exposed to the retained risk, reinsurance premium and change in the risk margin requirement as a result of reinsurance. Depending on how the risk margin corresponding to the reserve risk is calculated, two optimal reinsurance problems are formulated. We show that the optimal reinsurance policy can be in the form of two layers. Further, numerical examples illustrate that the optimal two-layer reinsurance contracts are only slightly different under these two methodologies.  相似文献   

3.
In a reinsurance contract, a reinsurer promises to pay the part of the loss faced by an insurer in exchange for receiving a reinsurance premium from the insurer. However, the reinsurer may fail to pay the promised amount when the promised amount exceeds the reinsurer’s solvency. As a seller of a reinsurance contract, the initial capital or reserve of a reinsurer should meet some regulatory requirements. We assume that the initial capital or reserve of a reinsurer is regulated by the value-at-risk (VaR) of its promised indemnity. When the promised indemnity exceeds the total of the reinsurer’s initial capital and the reinsurance premium, the reinsurer may fail to pay the promised amount or default may occur. In the presence of the regulatory initial capital and the counterparty default risk, we investigate optimal reinsurance designs from an insurer’s point of view and derive optimal reinsurance strategies that maximize the expected utility of an insurer’s terminal wealth or minimize the VaR of an insurer’s total retained risk. It turns out that optimal reinsurance strategies in the presence of the regulatory initial capital and the counterparty default risk are different both from optimal reinsurance strategies in the absence of the counterparty default risk and from optimal reinsurance strategies in the presence of the counterparty default risk but without the regulatory initial capital.  相似文献   

4.
Borch (1969) advocated that the study of optimal reinsurance design should take into consideration the conflicting interests of both an insurer and a reinsurer. Motivated by this and exploiting a Bowley solution (or Stackelberg equilibrium game), this paper proposes a two-step model that tackles an optimal risk transfer problem between the insurer and the reinsurer. From the insurer’s perspective, the first step of the model provisionally derives an optimal reinsurance policy for a given reinsurance premium while reflecting the reinsurer’s risk appetite. The reinsurer’s risk appetite is controlled by imposing upper limits on the first two moments of the coverage. Through a comparative analysis, the effect of the insurer’s initial wealth on the demand for reinsurance is then examined, when the insurer’s risk aversion and prudence are taken into account. Based on the insurer’s provisional strategy, the second step of the model determines the monopoly premium that maximizes the reinsurer’s expected profit while still satisfying the insurer’s incentive condition. Numerical examples are provided to illustrate our Bowley solution.  相似文献   

5.
This paper investigates proportional and excess-loss reinsurance contracts in a continuous-time principal–agent framework, in which the insurer is the agent and the reinsurer is the principal. Insurance claims follow the classic Cramér–Lundberg process. The insurer believes that the claim intensity is uncertain and he chooses robust risk retention levels to maximize the penalty-dependent multiple-priors utility. The reinsurer designs reinsurance contracts subject to the insurer’s incentive compatibility constraints. The analytical expressions of the two robust reinsurance contracts are derived. Our results show that the robust reinsurance demand and price are greater than their respective standard values without model ambiguity, and increase as the insurer’s ambiguity aversion increases. Moreover, the reinsurer specifies a decreasing reinsurance price to induce increasing demand over time. Specifically, the price of excess-loss reinsurance is higher, relative to that of proportional reinsurance. Further, only if the insurer’s risk aversion is high or the reinsurer’s risk aversion is low, the insurer prefers the excess-loss reinsurance contract.  相似文献   

6.
This paper investigates optimal reinsurance strategies for an insurer with multiple lines of business under the criterion of minimizing its total capital requirement calculated based on the multivariate lower-orthant Value-at-Risk. The reinsurance is purchased by the insurer for each line of business separately. The premium principles used to compute the reinsurance premiums are allowed to differ from one line of business to another, but they all satisfy three mild conditions: distribution invariance, risk loading and preserving the convex order, which are satisfied by many popular premium principles. Our results show that an optimal strategy for the insurer is to buy a two-layer reinsurance policy for each line of business, and it reduces to be a one-layer reinsurance contract for premium principles satisfying some additional mild conditions, which are met by the expected value principle, standard deviation principle and Wang’s principle among many others. In the end of this paper, some numerical examples are presented to illustrate the effects of marginal distributions, risk dependence structure and reinsurance premium principles on the optimal layer reinsurance.  相似文献   

7.
In this paper, we study the optimal proportional reinsurance and investment strategy for an insurer that only has partial information at its disposal, under the criterion of maximizing the expected utility of the terminal wealth. We assume that the surplus of the insurer is governed by a jump diffusion process, and that reinsurance is used by the insurer to reduce risk. In addition, the insurer can invest in financial markets. We give a characterization for the optimal strategy within a non-Markovian setting. Malliavin calculus for Lévy processes is used for the analysis.  相似文献   

8.
Optimal reinsurance under VaR and CTE risk measures   总被引:1,自引:0,他引:1  
Let X denote the loss initially assumed by an insurer. In a reinsurance design, the insurer cedes part of its loss, say f(X), to a reinsurer, and thus the insurer retains a loss If(X)=Xf(X). In return, the insurer is obligated to compensate the reinsurer for undertaking the risk by paying the reinsurance premium. Hence, the sum of the retained loss and the reinsurance premium can be interpreted as the total cost of managing the risk in the presence of reinsurance. Based on a technique used in [Müller, A., Stoyan, D., 2002. Comparison Methods for Stochastic Models and Risks. In: Willey Series in Probability and Statistics] and motivated by [Cai J., Tan K.S., 2007. Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measure. Astin Bull. 37 (1), 93–112] on using the value-at-risk (VaR) and the conditional tail expectation (CTE) of an insurer’s total cost as the criteria for determining the optimal reinsurance, this paper derives the optimal ceded loss functions in a class of increasing convex ceded loss functions. The results indicate that depending on the risk measure’s level of confidence and the safety loading for the reinsurance premium, the optimal reinsurance can be in the forms of stop-loss, quota-share, or change-loss.  相似文献   

9.
Reinsurance can provide an effective way for insurer to manage its risk exposure. In this paper, we further analyze the optimal reinsurance models recently proposed by J. Cai and K. S. Tan [Astin Bulletin, 2007, 37(1): 93-112]. With the criteria of minimizing the value-at-risk (VaR) risk measure of insurer’s total loss exposure, we derive the optimal values of sharing proportion a, retention d, and layer l of two reinsurance treaties: the limited changeloss f(x) = a{(x - d)+ - (x - l)+} and the truncated change-loss f(x) = a(x-d)+I(xl). Both of the reinsurance plans have been considered to be more realistic and practical in the real business. Our solutions have several appealing features: (i) there is only one condition to verify for the existence of optimal limited change-loss reinsurance while there always exists an optimal truncated change-loss reinsurance, (ii) the resulting optimal parameters have simple analytic forms which depend only on assumed loss distribution, reinsurer’s safety loading, and insurer’s risk tolerance, (iii) the optimal retention d for limited change-loss reinsurance is the same as that by Cai and Tan while the optimal value is smaller for truncated change-loss, (iv) the optimal sharing proportion and layer are always the same for both reinsurance plans, (v) minimized VaR are strictly lower than the values derived by Cai and Tan, (vi) the optimization results reveal possible drawbacks of VaR-based risk management that a heavy tail risk exposure may be expressed by lower VaR.  相似文献   

10.
李辰  李效虎 《数学研究》2013,(4):351-366
为了避免由高理赔额造成的违约,保险公司通常通过签订再保合约将一部分风险转移给再保险公司.近年来对最优再保策略的研究着眼于最小化自留损失的方差,保险公司总风险的value-at-risk或conditional tail expectation.本文研究了在expected shortfall准则下的再保策略.我们给出了最优的增凸转移损失函数,并分别讨论了有无保费限制的情形.  相似文献   

11.
本文研究了均值-方差优化准则下,保险人的最优投资和最优再保险问题.我们用一个复合泊松过程模型来拟合保险人的风险过程,保险人可以投资无风险资产和价格服从跳跃-扩散过程的风险资产.此外保险人还可以购买新的业务(如再保险).本文的限制条件为投资和再保险策略均非负,即不允许卖空风险资产,且再保险的比例系数非负.除此之外,本文还引入了新巴塞尔协议对风险资产进行监管,使用随机二次线性(linear-quadratic,LQ)控制理论推导出最优值和最优策略.对应的哈密顿-雅克比-贝尔曼(Hamilton-Jacobi-Bellman,HJB)方程不再有古典解.在粘性解的框架下,我们给出了新的验证定理,并得到有效策略(最优投资策略和最优再保险策略)的显式解和有效前沿.  相似文献   

12.
In this paper, we study the optimal investment and optimal reinsurance problem for an insurer under the criterion of mean-variance. The insurer’s risk process is modeled by a compound Poisson process and the insurer can invest in a risk-free asset and a risky asset whose price follows a jump-diffusion process. In addition, the insurer can purchase new business (such as reinsurance). The controls (investment and reinsurance strategies) are constrained to take nonnegative values due to nonnegative new business and no-shorting constraint of the risky asset. We use the stochastic linear-quadratic (LQ) control theory to derive the optimal value and the optimal strategy. The corresponding Hamilton–Jacobi–Bellman (HJB) equation no longer has a classical solution. With the framework of viscosity solution, we give a new verification theorem, and then the efficient strategy (optimal investment strategy and optimal reinsurance strategy) and the efficient frontier are derived explicitly.  相似文献   

13.
The paper concerns the problem how to purchase the reinsurance in order to make the insurer and the reinsurance company's total risk to be least under the expected value principle. When the insurer and reinsurance company take arbitrary risk measures, sufficient conditions for optimality of reinsurance contract are given within the restricted class of admissible contracts. Further, the explicit forms of optimal reinsurance contract under several special risk measures are given, and the method to decide parameters as well.  相似文献   

14.
The paper concerns the problem how to purchase the reinsurance in order to make the insurer and the reinsurance company's total risk to be least under the expected value principle. When the insurer and reinsurance company take arbitrary risk measures, sufficient con- ditions for optimality of reinsurance contract are given within the restricted class of admissible contracts. Further, the explicit forms of optimal reinsurance contract under several special risk measures are given, and the method to decide parameters as well.  相似文献   

15.
This paper studies optimal investment and reinsurance problems for an insurer under regime-switching models. Two types of risk models are considered, the first being a Markov-modulated diffusion approximation risk model and the second being a Markov-modulated classical risk model. The insurer can invest in a risk-free bond and a risky asset, where the underlying models for investment assets are modulated by a continuous-time, finite-state, observable Markov chain. The insurer can also purchase proportional reinsurance to reduce the exposure to insurance risk. The variance principle is adopted to calculate the reinsurance premium, and Markov-modulated constraints on both investment and reinsurance strategies are considered. Explicit expressions for the optimal strategies and value functions are derived by solving the corresponding regime-switching Hamilton–Jacobi–Bellman equations. Numerical examples for optimal solutions in the Markov-modulated diffusion approximation model are provided to illustrate our results.  相似文献   

16.
本文关注的是在标准差准则下如何进行再保险, 使得保险公司和再保险公司的风险波动达到最小. 在容许合约类范围内得到了建立最优再保险合约的充分条件. 如果再保险公司的风险小于一个给定阈值, 我们找到了使保险公司的风险最小的最优再保险合约. 在这里, 保险公司可以采取三种最一般且有效的风险措施.  相似文献   

17.
This paper focuses on risk control problem of the insurance company in enterprise risk management. The insurer manages its financial risk through purchasing excess-of-loss reinsurance, and investing its wealth in the constant elasticity of variance stock market. We model risk process by Brownian motion with drift, and study the optimization problem of maximizing the exponential utility of terminal wealth under the controls of reinsurance and investment. Using stochastic control theory, we obtain explicit expressions for optimal polices and value function. We also show that the optimal excess-of-loss reinsurance is always better than optimal proportional reinsurance. And some numerical examples are given.  相似文献   

18.
??Motivated by[1] and [2], we study in this paper the optimal (from the insurer's point of view) reinsurance problem when risk is measured by a general risk measure, namely the GlueVaR distortion risk measures which is firstly proposed by [3].Suppose an insurer is exposed to the risk and decides to buy a reinsurance contract written on the total claim amounts basis, i.e. the reinsurer covers and the cedent covers . In addition, the insurer is obligated to compensate the reinsurer for undertaking the risk by paying the reinsurance premium, ( is the safety loading), under the expectation premium principle. Based on a technique used in [2], this paper derives the optimal ceded loss functions in a class of increasing convex ceded loss functions. It turns out that the optimal ceded loss function is of stop-loss type.  相似文献   

19.
This paper deals with the optimal reinsurance strategy from an insurer’s point of view. Our objective is to find the optimal policy that maximises the insurer’s survival probability. To meet the requirement of regulators and provide a tool to risk management, we introduce the dynamic version of Value-at-Risk (VaR), Conditional Value-at-Risk (CVaR) and worst-case CVaR (wcCVaR) constraints in diffusion model and the risk measure limit is proportional to company’s surplus in hand. In the dynamic setting, a CVaR/wcCVaR constraint is equivalent to a VaR constraint under a higher confidence level. Applying dynamic programming technique, we obtain closed form expressions of the optimal reinsurance strategies and corresponding survival probabilities under both proportional and excess-of-loss reinsurance. Several numerical examples are provided to illustrate the impact caused by dynamic VaR/CVaR/wcCVaR limit in both types of reinsurance policy.  相似文献   

20.
We investigate optimal strategies for a constant absolute risk aversion (CARA) insurer to manage its business risk through not only equity investment and proportional reinsurance but also trading derivatives of the equity. We obtain the optimal strategies in closed-form and quantify the value of derivatives trading by means of certainty-equivalence. Some numerical examples and sensitivity analysis are presented to illustrate our theoretical results. Our numerical results show that, unlike standard CRRA investors, the gain from trading derivatives to a CARA insurer is small and the insurer needs to expose itself to a relatively large position to fully enjoy the gain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号