首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In most studies on optimal reinsurance, little attention has been paid to controlling the reinsurer’s risk. However, real-world insurance markets always place a limit on coverage, otherwise the insurer will be subjected to under a heavy financial burden when the insured suffers a large unexpected covered loss. In this paper, we revisit the optimal reinsurance problem under the optimality criteria of VaR and TVaR risk measures when the constraints for the reinsurer’s risk exposure are presented. Two types of constraints are considered that have been proposed by Cummins and Mahul (2004) and Zhou et al. (2010), respectively. It is shown that two-layer reinsurance is always the optimal reinsurance policy under both VaR and TVaR risk measures and under both types of constraints. This implies that the two-layer reinsurance policy is more robust. Furthermore, the optimal quantity of ceded risk depends on the confidence level, the safety loading and the tolerance level, as well as on the relation between them.  相似文献   

2.
In this paper, we investigate the optimal time-consistent investment–reinsurance strategies for an insurer with state dependent risk aversion and Value-at-Risk (VaR) constraints. The insurer can purchase proportional reinsurance to reduce its insurance risks and invest its wealth in a financial market consisting of one risk-free asset and one risky asset, whose price process follows a geometric Brownian motion. The surplus process of the insurer is approximated by a Brownian motion with drift. The two Brownian motions in the insurer’s surplus process and the risky asset’s price process are correlated, which describe the correlation or dependence between the insurance market and the financial market. We introduce the VaR control levels for the insurer to control its loss in investment–reinsurance strategies, which also represent the requirement of regulators on the insurer’s investment behavior. Under the mean–variance criterion, we formulate the optimal investment–reinsurance problem within a game theoretic framework. By using the technique of stochastic control theory and solving the corresponding extended Hamilton–Jacobi–Bellman (HJB) system of equations, we derive the closed-form expressions of the optimal investment–reinsurance strategies. In addition, we illustrate the optimal investment–reinsurance strategies by numerical examples and discuss the impact of the risk aversion, the correlation between the insurance market and the financial market, and the VaR control levels on the optimal strategies.  相似文献   

3.
We study the effect of capacity uncertainty on the inventory decisions of a risk-averse newsvendor. We consider two well-known risk criteria, namely Value-at-Risk (VaR) included as a constraint and Conditional Value-at-Risk (CVaR). For the risk-neutral newsvendor, we find that the optimal order quantity is not affected by the capacity uncertainty. However, this result does not hold for the risk-averse newsvendor problem. Specifically, we find that capacity uncertainty decreases the order quantity under the CVaR criterion. Under the VaR constraint, capacity uncertainty leads to an order decrease for low confidence levels, but to an order increase for high confidence levels. This implies that the risk criterion should be carefully selected as it has an important effect on inventory decisions. This is shown for the newsvendor problem, but is also likely to hold for other inventory control problems that future research can address.  相似文献   

4.
This paper investigates optimal reinsurance strategies for an insurer with multiple lines of business under the criterion of minimizing its total capital requirement calculated based on the multivariate lower-orthant Value-at-Risk. The reinsurance is purchased by the insurer for each line of business separately. The premium principles used to compute the reinsurance premiums are allowed to differ from one line of business to another, but they all satisfy three mild conditions: distribution invariance, risk loading and preserving the convex order, which are satisfied by many popular premium principles. Our results show that an optimal strategy for the insurer is to buy a two-layer reinsurance policy for each line of business, and it reduces to be a one-layer reinsurance contract for premium principles satisfying some additional mild conditions, which are met by the expected value principle, standard deviation principle and Wang’s principle among many others. In the end of this paper, some numerical examples are presented to illustrate the effects of marginal distributions, risk dependence structure and reinsurance premium principles on the optimal layer reinsurance.  相似文献   

5.
Reinsurance can provide an effective way for insurer to manage its risk exposure. In this paper, we further analyze the optimal reinsurance models recently proposed by J. Cai and K. S. Tan [Astin Bulletin, 2007, 37(1): 93-112]. With the criteria of minimizing the value-at-risk (VaR) risk measure of insurer’s total loss exposure, we derive the optimal values of sharing proportion a, retention d, and layer l of two reinsurance treaties: the limited changeloss f(x) = a{(x - d)+ - (x - l)+} and the truncated change-loss f(x) = a(x-d)+I(xl). Both of the reinsurance plans have been considered to be more realistic and practical in the real business. Our solutions have several appealing features: (i) there is only one condition to verify for the existence of optimal limited change-loss reinsurance while there always exists an optimal truncated change-loss reinsurance, (ii) the resulting optimal parameters have simple analytic forms which depend only on assumed loss distribution, reinsurer’s safety loading, and insurer’s risk tolerance, (iii) the optimal retention d for limited change-loss reinsurance is the same as that by Cai and Tan while the optimal value is smaller for truncated change-loss, (iv) the optimal sharing proportion and layer are always the same for both reinsurance plans, (v) minimized VaR are strictly lower than the values derived by Cai and Tan, (vi) the optimization results reveal possible drawbacks of VaR-based risk management that a heavy tail risk exposure may be expressed by lower VaR.  相似文献   

6.
In a reinsurance contract, a reinsurer promises to pay the part of the loss faced by an insurer in exchange for receiving a reinsurance premium from the insurer. However, the reinsurer may fail to pay the promised amount when the promised amount exceeds the reinsurer’s solvency. As a seller of a reinsurance contract, the initial capital or reserve of a reinsurer should meet some regulatory requirements. We assume that the initial capital or reserve of a reinsurer is regulated by the value-at-risk (VaR) of its promised indemnity. When the promised indemnity exceeds the total of the reinsurer’s initial capital and the reinsurance premium, the reinsurer may fail to pay the promised amount or default may occur. In the presence of the regulatory initial capital and the counterparty default risk, we investigate optimal reinsurance designs from an insurer’s point of view and derive optimal reinsurance strategies that maximize the expected utility of an insurer’s terminal wealth or minimize the VaR of an insurer’s total retained risk. It turns out that optimal reinsurance strategies in the presence of the regulatory initial capital and the counterparty default risk are different both from optimal reinsurance strategies in the absence of the counterparty default risk and from optimal reinsurance strategies in the presence of the counterparty default risk but without the regulatory initial capital.  相似文献   

7.
CVaR风险度量模型在投资组合中的运用   总被引:9,自引:1,他引:8  
风险价值(VaR)是近年来金融机构广泛运用的风险度量指标,条件风险价值(CVaR)是VaR的修正模型,也称为平均超额损失或尾部VaR,它比VaR具有更好的性质。在本中,我们将运用风险度量指标VaR和CVaR,提出一个新的最优投资组合模型。介绍了模型的算法,而且利用我国的股票市场进行了实证分析,验证了新模型的有效性,为制定合理的投资组合提供了一种新思路。  相似文献   

8.
This paper investigates an investment-reinsurance problem for an insurance company that has a possibility to choose among different business activities, including reinsurance/new business and security investment. Our main objective is to find the optimal policy to minimize its probability of ruin. The main novelty of this paper is the introduction of a dynamic Value-at-Risk (VaR) constraint. This provides a way to control risk and to fulfill the requirement of regulators on market risk. This problem is formulated as an infinite horizontal stochastic control problem with a constrained control space. The dynamic programming technique is applied to derive the Hamilton-Jacobi-Bellman (HJB) equation and the Lagrange multiplier method is used to tackle the dynamic VaR constraint. Closed-form expressions for the minimal ruin probability as well as the optimal investment-reinsurance/new business policy are derived. It turns out that the risk exposure of the insurance company subject to the dynamic VaR constraint is always lower than otherwise. Finally, a numerical example is given to illustrate our results.  相似文献   

9.
Recently distortion risk measure has been an interesting tool for the insurer to reflect its attitude toward risk when forming the optimal reinsurance strategy. Under the distortion risk measure, this paper discusses the reinsurance design with unbinding premium constraint and the ceded loss function in a general feasible region which requiring the retained loss function to be increasing and left-continuous. Explicit solution of the optimal reinsurance strategy is obtained by introducing a premium-adjustment function. Our result has the form of layer reinsurance with the mixture of normal reinsurance strategies in each layer. Finally, to illustrate the applicability of our results, we derive the optimal reinsurance solutions with premium constraint under two special distortion risk measures—VaR and TVaR.  相似文献   

10.
We study the problem of optimal reinsurance as a means of risk management in the regulatory framework of Solvency II under Conditional Value-at-Risk and, as its natural extension, spectral risk measures. First, we show that stop-loss reinsurance is optimal under both Conditional Value-at-Risk and spectral risk measures. Spectral risk measures thus constitute a more general class of suitable regulatory risk measures than specific Conditional Value-at-Risk. At the same time, the established type of stop-loss reinsurance can be maintained as the optimal risk management strategy that minimizes regulatory capital. Second, we derive the optimal deductibles for stop-loss reinsurance. We show that under Conditional Value-at-Risk, the optimal deductible tends towards restrictive and counter-intuitive corner solutions or “plunging”, which is a serious objection against its use in regulatory risk management. By means of the broader class of spectral risk measures, we are able to overcome this shortcoming as optimal deductibles are now interior solutions. Especially, the recently discussed power spectral risk measures and the Wang risk measure are shown to avoid any plunging. They yield a one-to-one correspondence between the risk parameter and the optimal deductible and, thus, provide economically plausible risk management strategies.  相似文献   

11.
Borch (1969) advocated that the study of optimal reinsurance design should take into consideration the conflicting interests of both an insurer and a reinsurer. Motivated by this and exploiting a Bowley solution (or Stackelberg equilibrium game), this paper proposes a two-step model that tackles an optimal risk transfer problem between the insurer and the reinsurer. From the insurer’s perspective, the first step of the model provisionally derives an optimal reinsurance policy for a given reinsurance premium while reflecting the reinsurer’s risk appetite. The reinsurer’s risk appetite is controlled by imposing upper limits on the first two moments of the coverage. Through a comparative analysis, the effect of the insurer’s initial wealth on the demand for reinsurance is then examined, when the insurer’s risk aversion and prudence are taken into account. Based on the insurer’s provisional strategy, the second step of the model determines the monopoly premium that maximizes the reinsurer’s expected profit while still satisfying the insurer’s incentive condition. Numerical examples are provided to illustrate our Bowley solution.  相似文献   

12.
In this paper, we study the optimal investment and optimal reinsurance problem for an insurer under the criterion of mean-variance. The insurer’s risk process is modeled by a compound Poisson process and the insurer can invest in a risk-free asset and a risky asset whose price follows a jump-diffusion process. In addition, the insurer can purchase new business (such as reinsurance). The controls (investment and reinsurance strategies) are constrained to take nonnegative values due to nonnegative new business and no-shorting constraint of the risky asset. We use the stochastic linear-quadratic (LQ) control theory to derive the optimal value and the optimal strategy. The corresponding Hamilton–Jacobi–Bellman (HJB) equation no longer has a classical solution. With the framework of viscosity solution, we give a new verification theorem, and then the efficient strategy (optimal investment strategy and optimal reinsurance strategy) and the efficient frontier are derived explicitly.  相似文献   

13.
Reinsurance plays a vital role in the insurance activities. The insurer and the reinsurer, which have conflicting interests, compose the two parties of a reinsurance contract. In this paper, we extend the results achieved by Tan et al. (N Am Actuar J 13(4):459–482, 2009) to the case in which the perspectives of both the insurer and the reinsurer are considered. We study the optimal quota-share and stop-loss reinsurance models by minimizing the convex combination of the VaR risk measures of the insurer’s cost and the reinsurer’s cost. Furthermore, as many as 16 reinsurance premium principles are investigated. The results show that optimal quota-share and stop-loss reinsurance may or may not exist depending on the chosen principles. Moreover, we establish the sufficient and necessary conditions for the existence of the nontrivial optimal reinsurance.  相似文献   

14.
In this paper, the Conditional Value-at-Risk (CVaR) is adopted to measure the total loss of multiple lines of insurance business and two nonparametric estimation methods are introduced to explore the optimal multivariate quota-share reinsurance under a mean-CVaR framework. While almost all the existing literature on optimal reinsurance are based on a probabilistic derivation, the present paper relies on a statistical analysis. The proposed optimal reinsurance models are directly formulated on empirical data and no explicit distributional assumption on the underlying risk vector is required. The resulting nonparametric reinsurance models are convex and computationally amenable, circumventing the difficulty of computing CVaR of the sum of a generally dependent random vector. Statistical consistency of the resulting estimators for the best CVaR is established for both nonparametric models, allowing empirical data to be generated from any stationary process satisfying strong mixing conditions. Finally, numerical experiments are presented to show that a routine bootstrap procedure can capture the distributions of the resulting risk measures well for independent data.  相似文献   

15.
This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective.  相似文献   

16.
本文假设投资者是风险厌恶型,用CVaR作为测量投资组合风险的方法.在预算约束的条件下,以最小化CVaR为目标函数,建立了带有交易费用的投资组合模型.将模型转化为两阶段补偿随机优化模型,构造了求解模型的随机L-S算法.为了验证算法的有效性,用中国证券市场中的股票进行数值试验,得到了最优投资组合、VaR和CVaR的值.而且对比分析了有交易费和没有交易费的最优投资组合的不同,给出了相应的有效前沿.  相似文献   

17.
We consider the problem of optimal portfolio choice using the Conditional Value-at-Risk (CVaR) and Value-at-Risk (VaR) measures for a market consisting of n risky assets and a riskless asset and where short positions are allowed. When the distribution of returns of risky assets is unknown but the mean return vector and variance/covariance matrix of the risky assets are fixed, we derive the distributionally robust portfolio rules. Then, we address uncertainty (ambiguity) in the mean return vector in addition to distribution ambiguity, and derive the optimal portfolio rules when the uncertainty in the return vector is modeled via an ellipsoidal uncertainty set. In the presence of a riskless asset, the robust CVaR and VaR measures, coupled with a minimum mean return constraint, yield simple, mean-variance efficient optimal portfolio rules. In a market without the riskless asset, we obtain a closed-form portfolio rule that generalizes earlier results, without a minimum mean return restriction.  相似文献   

18.
It is well-known that reinsurance can be an effective risk management solution for financial institutions such as the insurance companies. The optimal reinsurance solution depends on a number of factors including the criterion of optimization and the premium principle adopted by the reinsurer. In this paper, we analyze the Value-at-Risk based optimal risk management solution using reinsurance under a class of premium principles that is monotonic and piecewise. The monotonic piecewise premium principles include not only those which preserve stop-loss ordering, but also the piecewise premium principles which are monotonic and constructed by concatenating a series of premium principles. By adopting the monotonic piecewise premium principle, our proposed optimal reinsurance model has a number of advantages. In particular, our model has the flexibility of allowing the reinsurer to use different risk loading factors for a given premium principle or use entirely different premium principles depending on the layers of risk. Our proposed model can also analyze the optimal reinsurance strategy in the context of multiple reinsurers that may use different premium principles (as attributed to the difference in risk attitude and/or imperfect information). Furthermore, by artfully imposing certain constraints on the ceded loss functions, the resulting model can be used to capture the reinsurer’s willingness and/or capacity to accept risk or to control counterparty risk from the perspective of the insurer. Under some technical assumptions, we derive explicitly the optimal form of the reinsurance strategies in all the above cases. In particular, we show that a truncated stop-loss reinsurance treaty or a limited stop-loss reinsurance treaty can be optimal depending on the constraint imposed on the retained and/or ceded loss functions. Some numerical examples are provided to further compare and contrast our proposed models to the existing models.  相似文献   

19.
李辰  李效虎 《数学研究》2013,(4):351-366
为了避免由高理赔额造成的违约,保险公司通常通过签订再保合约将一部分风险转移给再保险公司.近年来对最优再保策略的研究着眼于最小化自留损失的方差,保险公司总风险的value-at-risk或conditional tail expectation.本文研究了在expected shortfall准则下的再保策略.我们给出了最优的增凸转移损失函数,并分别讨论了有无保费限制的情形.  相似文献   

20.
In this paper, based on equilibrium control law proposed by Björk and Murgoci (2010), we study an optimal investment and reinsurance problem under partial information for insurer with mean–variance utility, where insurer’s risk aversion varies over time. Instead of treating this time-inconsistent problem as pre-committed, we aim to find time-consistent equilibrium strategy within a game theoretic framework. In particular, proportional reinsurance, acquiring new business, investing in financial market are available in the market. The surplus process of insurer is depicted by classical Lundberg model, and the financial market consists of one risk free asset and one risky asset with unobservable Markov-modulated regime switching drift process. By using reduction technique and solving a generalized extended HJB equation, we derive closed-form time-consistent investment–reinsurance strategy and corresponding value function. Moreover, we compare results under partial information with optimal investment–reinsurance strategy when Markov chain is observable. Finally, some numerical illustrations and sensitivity analysis are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号