首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
负压激励下含椭圆孔高弹体的屈曲分析   总被引:1,自引:1,他引:0       下载免费PDF全文
基于数值模拟与理论分析,研究了含周期性椭圆孔二维结构的屈曲行为。针对不同的屈曲模态,建立理论模型进行模态分析。结果表明,改变孔的几何参数,椭圆孔结构的屈曲模态会随之发生转换,理论分析与数值结果吻合良好。此外,在数值模拟中,与位移加载不同,负压激励下的单胞需要考虑力边界条件的修正,以确保其满足完备性条件。已有工作在单胞选择中常存在问题,导致错误结果。针对上述问题研究了不同单胞所对应的边界条件,并结合有限结构进行了分析与讨论。  相似文献   

2.
利用复模态正交性理论的数值实验发现并提出了标号现象.首先根据复模态理论在两种状态空间格式下,对不同振动系统的状态向量解耦功能进行分析,其次提出了对称及非对称重频系统的状态向量正交性的相关结论并进行了数值验证;继而发现并提出了标号现象,并指出了克服标号现象的方法;最后以工程应用中的一个常见的灵敏度分析问题为例,用数值算例的结果说明了忽略标号现象可能存在的风险.  相似文献   

3.
有限振幅T-S波在非平行边界层中的非线性演化研究   总被引:2,自引:0,他引:2  
研究对非平行边界层稳定性有重要影响的非线性演化问题,导出与其相应的抛物化稳定性方程组,发展了求解有限振幅T-S波的非线性演化的高效数值方法。这一数值方法包括预估-校正迭代求解各模态非线性方程并避免模态间的耦合,采用高阶紧致差分格式,满足正规化条件,确定不同模态非线性项表和数值稳定地作空间推进。通过给出T-S波不同的初始幅值,研究其非线性演化。算例与全Navier-Stokes方程的直接数值模拟(DNS)的结果作了比较。  相似文献   

4.
对带集中质量,变长度(或速度)轴向运动梁的振动特性采用两种精确方法求解.首先,对变长度轴向运动Euler(欧拉)梁横向自由振动方程进行化简,通过复模态分析得到本征方程,并在有集中质量的边界条件下得到频率方程,用数值方法求解固有频率和模态函数.然后,采用有限元方法建立运动梁自由振动的方程,求解矩阵方程得到复特征值和复特征向量,结合形函数得到复模态位移.最后,将两种方法的计算结果进行了分析和对比.数值算例的结果表明:不同的轴向运动速度和集中质量对变长度轴向运动梁的振动特性有显著影响,两种计算方法的结果接近且均有效.  相似文献   

5.
柔性大变形系统在进行模态降阶时,若模态选取不当,会影响求解精度甚至导致求解结果发散.对此,提出了基于绝对节点坐标法(ANCF)的柔性大变形系统模态自适应选择方法.通过ANCF梁单元建立系统的动力学模型;利用全模态稀疏表示内部区域的坐标;根据Latin超立方抽样构建采样矩阵,作用于动力学方程,以减少方程的数量;以采样后的动力学方程作为约束,构造模态坐标范数优化问题;求解优化问题可以得到具有重大贡献的模态.通过两个实例表明:数值计算结果与常用方法的结果高度吻合并且求解效率显著提升.  相似文献   

6.
轴向变速运动粘弹性弦线横向振动的复模态Galerkin方法   总被引:1,自引:0,他引:1  
在考虑初始张力和轴向速度简谐涨落的情况下,利用含预应力三维变形体的运动方程,建立了轴向变速运动弦线横向振动的非线性控制方程,材料的粘弹性行为由Kelvin模型描述.利用匀速运动线性弦线的模态函数构造了变速运动非线性弦线复模态Galerkin方法的基底函数,并借助构造出来的基底函数研究了复模态Galerkin方法在轴向变速运动粘弹性弦线非线性振动分析中的应用.数值结果表明,复模态Galerkin方法相比实模态Galerkin方法对变系数陀螺系统有较高的收敛速度.  相似文献   

7.
超音速平板边界层转捩中层流突变为湍流的机理研究   总被引:8,自引:2,他引:6  
采用空间模式,对来流Mach数为4.5的平板边界层转捩过程做了直接数值模拟.对结果进行的分析发现,在层流-湍流转捩的突变(breakdown)过程中,层流剖面得以快速转变为湍流剖面的机理在于平均剖面的修正导致了其稳定性特征的显著变化.虽然在层流下第2模态T-S波更不稳定,但在层流突变为湍流的过程中,第1模态不稳定波也起了重要作用.  相似文献   

8.
两自由度非对称三次系统非奇异时的非线性模态及叠加性   总被引:4,自引:1,他引:3  
徐鉴  陆启韶 《应用数学和力学》1998,19(12):1077-1086
本文利用非线性模态子空间的不变性研究两自由度非对称三次系统在非奇异条件下的非线性模态及其模态叠加解有效性,重点考虑这种有效性与模态动力学方程静态分岔之间的关系·大量的数值结果表明,非线性模态解的有效性不仅与其局部性的限制有关,而且与模态动力学方程静态解分岔有关·  相似文献   

9.
利用高精度多重多级子结构方法与传统的动力子结构模态综合法(MSC.Nastran超单元法)进行对比研究.该算法采用Lanczos方法与子结构周游树技术,考虑了各子结构内部自由度对整体求解的贡献,算法精度得到显著提高,并与不作凝聚的单一整体结构分析具有相同的计算精度.数值结果表明多重多级子结构方法相比于模态综合法在子结构划分及多层次调用上更为灵活,计算结果不受复杂子结构划分方式的限制和出口点选取的影响,在高阶频率的计算方面精度更好.  相似文献   

10.
粘弹性板动力稳定性分析中的两模态Galerkin逼近   总被引:2,自引:0,他引:2  
利用最大Liapunov指数分析法以及其它数值和解析的动力学方法,研究了大挠度粘弹性薄板的动力稳定性。材料的行为由Boltzmann叠加原理描述。采用Galerkin方法将原积分-偏微分模型简化为两模态的近似积分模型,而通过引进新变量,该近似积分模型可进一步化为一个常微分模型。数值比较了1-模态和2-模态截断系统的动力学性质,讨论了面内周期激励下材料的粘弹性性质、加载的幅度和初值对板动力学行为的影响。  相似文献   

11.
In this report, we give a semi‐discrete defect correction finite element method for the unsteady incompressible magnetohydrodynamics equations. The defect correction method is an iterative improvement technique for increasing the accuracy of a numerical solution without applying a grid refinement. Firstly, the nonlinear magnetohydrodynamics equations is solved with an artificial viscosity term. Then, the numerical solutions are improved on the same grid by a linearized defect‐correction technique. Then, we give the numerical analysis including stability analysis and error analysis. The numerical analysis proves that our method is stable and has an optimal convergence rate. In order to show the effect of our method, some numerical results are shown. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, a variable-order nonlinear cable equation is considered. A numerical method with first-order temporal accuracy and fourth-order spatial accuracy is proposed. The convergence and stability of the numerical method are analyzed by Fourier analysis. We also propose an improved numerical method with second-order temporal accuracy and fourth-order spatial accuracy. Finally, the results of a numerical example support the theoretical analysis.  相似文献   

13.
In this paper, a variable-order nonlinear cable equation is considered. A numerical method with first-order temporal accuracy and fourth-order spatial accuracy is proposed. The convergence and stability of the numerical method are analyzed by Fourier analysis. We also propose an improved numerical method with second-order temporal accuracy and fourth-order spatial accuracy. Finally, the results of a numerical example support the theoretical analysis.  相似文献   

14.
In this study, a fully discrete defect correction finite element method for the unsteady incompressible Magnetohydrodynamics (MHD) equations, which is leaded by combining the Back Euler time discretization with the two-step defect correction in space, is presented. It is a continuous work of our formal paper [Math Method Appl Sci. 2017. DOI:10.1002/mma.4296]. The defect correction method is an iterative improvement technique for increasing the accuracy of a numerical solution without applying a grid refinement. Firstly, the nonlinear MHD equation is solved with an artificial viscosity term. Then, the numerical solutions are improved on the same grid by a linearized defect-correction technique. Then, we introduce the numerical analysis including stability analysis and error analysis. The numerical analysis proves that our method is stable and has an optimal convergence rate. Some numerical results [see Math Method Appl Sci. 2017. DOI:10.1002/mma.4296] show that this method is highly efficient for the unsteady incompressible MHD problems.  相似文献   

15.
Error analysis of the numerical solution of split differential equations   总被引:1,自引:0,他引:1  
The operator splitting method is a widely used approach for solving partial differential equations describing physical processes. Its application usually requires the use of certain numerical methods in order to solve the different split sub-problems. The error analysis of such a numerical approach is a complex task. In the present paper we show that an interaction error appears in the numerical solution when an operator splitting procedure is applied together with a lower-order numerical method. The effect of the interaction error is investigated by an analytical study and by numerical experiments made for a test problem.  相似文献   

16.
This paper is concerned with an optimal shape design problem in fluid mechanics. The fluid flow is governed by the Stokes equations. The theoretical analysis and the numerical simulation are discussed in two and three-dimensional cases. The proposed approach is based on a sensitivity analysis of a design function with respect to the insertion of a small obstacle in the fluid flow domain. An asymptotic expansion is derived for a large class of cost functions using small topological perturbation technique. A fast and accurate numerical algorithm is proposed. The efficiency of the method is illustrated by some numerical examples.  相似文献   

17.
1 引言 本世纪40年代中期至50年代初,第一台电子计算机和第一批存储程序计算机即vonNeumann计算机相继问世 。此后,计算机新陈代谢异常迅速,大约每隔5年运算速度增加10倍.50年代的计算机是串行结构,每一时刻只能按照一条指令对一个数据进行操作。由于电子信息传输速度以光速为极限,单靠改进线路已难于得到所期望的计算性能,串行计算机性能已接近了物理极限。为了克服传统计算机结构对提高运行速度的限制,从60年代起人们开始探索将并行性引入计算机结构设计,提出了研制并行计算机的设想。1972年单指令流多数据流并行计算机Illiac Ⅳ投入运行;1976年向量计算机Cray—1投入运行。在整个80年代,具有共享存储的并行向量计算机研制、生产和商售都获得了很大成功。当代高  相似文献   

18.
In this paper, a numerical approximation method for solving a three-dimensional space Galilei invariant fractional advection diffusion equation is presented. The convergence and stability of the numerical approximation method are discussed by a new technique of Fourier analysis. The solvability of the numerical approximation method also is analyzed. Finally, applying Richardson extrapolation technique, a high-accuracy algorithm is structured and the numerical example demonstrated the theoretical results.  相似文献   

19.
In this article, a numerical method for recovering the local volatility in Black–Scholes model is proposed based on the Dupire formula in which the numerical derivatives are used. By Tikhonov regularization, a new numerical differentiation method in two-dimensional (2-D) case is presented. The convergent analysis and numerical examples are also given. It shows that our method is efficient and stable.  相似文献   

20.
定性分析了Borisuk和Tyson建立的蛙卵有丝分裂模型,讨论了其定态的存在性和稳定性,深入研究了该模型的分岔行为并通过数值实验加以证实。此外,还给出了Tyson数值结果的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号