首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Subgraph distances in graphs defined by edge transfers   总被引:1,自引:0,他引:1  
For two edge-induced subgraphs F and H of the same size in a graph G, the subgraph H can be obtained from F by an edge jump if there exist four distinct vertices u, v, w, and x in G such that uv ε E(F), wx ε E(G) - E(F), and H = F - uv + wx. The subgraph F is j-transformed into H if H can be obtained from F by a sequence of edge jumps. Necessary and sufficient conditions are presented for a graph G to have the property that every edge-induced subgraph of a fixed size in G can be j-transformed into every other edge-induced subgraph of that size. The minimum number of edge jumps required to transform one subgraph into another is called the jump distance. This distance is a metric and can be modeled by a graph. The jump graph J(G) of a graph G is defined as that graph whose vertices are the edges of G and where two vertices of J(G) are adjacent if and only if the corresponding edges of G are independent. For a given graph G, we consider the sequence {{Jk(G)}} of iterated jump graphs and classify each graph as having a convergent, divergent, or terminating sequence.  相似文献   

2.
For a graph G of size m1 and edge-induced subgraphs F and H of size k (1km), the subgraph H is said to be obtained from F by an edge jump if there exist four distinct vertices u,v,w, and x in G such that uvE(F), wxE(G)−E(F), and H=Fuv+wx. The minimum number of edge jumps required to transform F into H is the k-jump distance from F to H. For a graph G of size m1 and an integer k with 1km, the k-jump graph Jk(G) is that graph whose vertices correspond to the edge-induced subgraphs of size k of G and where two vertices of Jk(G) are adjacent if and only if the k-jump distance between the corresponding subgraphs is 1. All connected graphs G for which J2(G) is planar are determined.  相似文献   

3.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. We characterize the set of vertices of a tree that are contained in all, or in no, minimum total dominating sets of the tree.  相似文献   

4.
A graph is singular of nullity η if zero is an eigenvalue of its adjacency matrix with multiplicity η. If η(G)=1, then the core of G is the subgraph induced by the vertices associated with the non-zero entries of the zero-eigenvector. A connected subgraph of G with the least number of vertices and edges, that has nullity one and the same core as G, is called a minimal configuration. A subdivision of a graph G is obtained by inserting a vertex on every edge of G. We review various properties of minimal configurations. In particular, we show that a minimal configuration is a tree if and only if it is a subdivision of some other tree.  相似文献   

5.
Eigenvalues of the Laplacian of a graph   总被引:24,自引:0,他引:24  
Let G be a finite undirected graph with no loops or multiple edges. We define the Laplacian matrix of G,Δ(G)by Δij= degree of vertex i and Δij-1 if there is an edge between vertex i and vertex j. In this paper we relate the structure of the graph G to the eigenvalues of A(G): in particular we prove that all the eigenvalues of Δ(G) are non-negative, less than or equal to the number of vertices, and less than or equal to twice the maximum vertex degree. Precise conditions for equality are given.  相似文献   

6.
The metric dimension dim(G)of a graph G is the minimum number of vertices such that every vertex of G is uniquely determined by its vector of distances to the chosen vertices.The zero forcing number Z(G)of a graph G is the minimum cardinality of a set S of black vertices(whereas vertices in V(G)\S are colored white)such that V(G)is turned black after finitely many applications of"the color-change rule":a white vertex is converted black if it is the only white neighbor of a black vertex.We show that dim(T)≤Z(T)for a tree T,and that dim(G)≤Z(G)+1 if G is a unicyclic graph;along the way,we characterize trees T attaining dim(T)=Z(T).For a general graph G,we introduce the"cycle rank conjecture".We conclude with a proof of dim(T)-2≤dim(T+e)≤dim(T)+1 for e∈E(T).  相似文献   

7.
Some results on integral sum graphs   总被引:1,自引:0,他引:1  
Wang Yan  Bolian Liu   《Discrete Mathematics》2001,240(1-3):219-229
Let Z denote the set of all integers. The integral sum graph of a finite subset S of Z is the graph (S,E) with vertex set S and edge set E such that for u,vS, uvE if and only if u+vS. A graph G is called an integral sum graph if it is isomorphic to the integral sum graph of some finite subset S of Z. The integral sum number of a given graph G, denoted by ζ(G), is the smallest number of isolated vertices which when added to G result in an integral sum graph. Let x denote the least integer not less than the real x. In this paper, we (i) determine the value of ζ(KnE(Kr)) for r2n/3−1, (ii) obtain a lower bound for ζ(KnE(Kr)) when 2r<2n/3−1 and n5, showing by construction that the bound is sharp when r=2, and (iii) determine the value of ζ(Kr,r) for r2. These results provide partial solutions to two problems posed by Harary (Discrete Math. 124 (1994) 101–108). Finally, we furnish a counterexample to a result on the sum number of Kr,s given by Hartsfiedl and Smyth (Graphs and Matrices, R. Rees (Ed.), Marcel, Dekker, New York, 1992, pp. 205–211).  相似文献   

8.
For any positive integer n and any graph G a set D of vertices of G is a distance-n dominating set, if every vertex vV(G)−D has exactly distance n to at least one vertex in D. The distance-n domination number γ=n(G) is the smallest number of vertices in any distance-n dominating set. If G is a graph of order p and each vertex in G has distance n to at least one vertex in G, then the distance-n domination number has the upper bound p/2 as Ore's upper bound on the classical domination number. In this paper, a characterization is given for graphs having distance-n domination number equal to half their order, when the diameter is greater or equal 2n−1. With this result we confirm a conjecture of Boland, Haynes, and Lawson.  相似文献   

9.
Let G be a simple graph. The size of any largest matching in G is called the matching number of G and is denoted by ν(G). Define the deficiency of G, def(G), by the equation def(G)=|V(G)|−2ν(G). A set of points X in G is called an extreme set if def(GX)=def(G)+|X|. Let c0(G) denote the number of the odd components of G. A set of points X in G is called a barrier if c0(GX)=def(G)+|X|. In this paper, we obtain the following:

(1) Let G be a simple graph containing an independent set of size i, where i2. If X is extreme in G for every independent set X of size i in G, then there exists a perfect matching in G.

(2) Let G be a connected simple graph containing an independent set of size i, where i2. Then X is extreme in G for every independent set X of size i in G if and only if G=(U,W) is a bipartite graph with |U|=|W|i, and |Γ(Y)||U|−i+m+1 for any Y U, |Y|=m (1mi−1).

(3) Let G be a connected simple graph containing an independent set of size i, where i2. Then X is a barrier in G for every independent set X of size i in G if and only if G=(U,W) is a bipartite graph with |U|=|W|=i, and |Γ(Y)|m+1 for any Y U, |Y|=m (1mi−1).  相似文献   


10.
A nonempty set C of vertices is a star-cutset in a graph G if GC is disconnected and some vertex in C is adjacent to all the remaining vertices in C. Va?ek Chvátal proposed to call a graph G unbreakable if neither G nor its complement G has a star-cutset. A path with four vertices and three edges will be termed a P4. An edge uv of a graph G is called a wing, if for some vertices x, y, {u,v,x,y} induces a P4 in G. We define recursively the coercion class Cuv of a wing uv as follows:
  • 1 uvCuv, and
  • 1 if xyCuv and xy, x'y' are wings of a same P4 in G, then x'y'Cuv.
The purpose of this work is to present new results concerning unbreakable graphs, using the notion of coercion class. These results include a theorem asserting that every unbreakable graph contains at most two distinct coercion classes and a structure theorem for those unbreakable graphs that contain precisely two coercion classes. These results generalize several previously known results about unbreakable graphs.  相似文献   

11.
Wang  Tao  Liu  Ming Ju  Li  De Ming 《数学学报(英文版)》2019,35(11):1817-1826
Let G be a graph with vertex set V (G), edge set E(G) and maximum degree Δ respectively. G is called degree-magic if it admits a labelling of the edges by integers {1, 2, …,|E(G)|} such that for any vertex v the sum of the labels of the edges incident with v is equal to (1+|E(G)|)/2·d(v), where d(v) is the degree of v. Let f be a proper edge coloring of G such that for each vertex vV (G),|{e:eEv, f(e) ≤ Δ/2}|=|{e:eEv, f(e) > Δ/2}|, and such an f is called a balanced edge coloring of G. In this paper, we show that if G is a supermagic even graph with a balanced edge coloring and m ≥ 1, then (2m + 1)G is a supermagic graph. If G is a d-magic even graph with a balanced edge coloring and n ≥ 2, then nG is a d-magic graph. Results in this paper generalise some known results.  相似文献   

12.
Block graphs with unique minimum dominating sets   总被引:1,自引:0,他引:1  
For any graph G a set D of vertices of G is a dominating set, if every vertex vV(G)−D has at least one neighbor in D. The domination number γ(G) is the smallest number of vertices in any dominating set. In this paper, a characterization is given for block graphs having a unique minimum dominating set. With this result, we generalize a theorem of Gunther, Hartnell, Markus and Rall for trees.  相似文献   

13.
This paper addresses the problem of finding rectangular drawings of plane graphs, in which each vertex is drawn as a point, each edge is drawn as a horizontal or a vertical line segment, and the contour of each face is drawn as a rectangle. A graph is a 2–3 plane graph if it is a plane graph and each vertex has degree 3 except the vertices on the outer face which have degree 2 or 3. A necessary and sufficient condition for the existence of a rectangular drawing has been known only for the case where exactly four vertices of degree 2 on the outer face are designated as corners in a 2–3 plane graph G. In this paper we establish a necessary and sufficient condition for the existence of a rectangular drawing of G for the general case in which no vertices are designated as corners. We also give a linear-time algorithm to find a rectangular drawing of G if it exists.  相似文献   

14.
图G的一个用了颜色1,2,…,t的边着色称为区间t-着色,如果所有t种颜色都被用到,并且关联于G的同一个顶点的边上的颜色是各不相同的,且这些颜色构成了一个连续的整数区间.G称作是可区间着色的,如果对某个正整数t,G有一个区间t-着色.所有可区间着色的图构成的集合记作■.对图G∈■,使得G有一个区间t-着色的t的最小值和最大值分别记作ω(G)和W(G).现给出了图的区间着色的收缩图方法.利用此方法,我们对双圈图G∈■,证明了ω(G)=△(G)或△(G)+1,并且完全确定了ω(G)=△(G)及ω(G)=△(G)+1的双圈图类.  相似文献   

15.
Consider a graph G and a k-uniform hypergraph on common vertex set [n]. We say that is G-intersecting if for every pair of edges in there are vertices xX and yY such that x=y or x and y are joined by an edge in G. This notion was introduced by Bohman, Frieze, Ruszinkó and Thoma who proved a natural generalization of the Erd s–Ko–Rado Theorem for G-intersecting k-uniform hypergraphs for G sparse and k=O(n1/4). In this note, we extend this result to .  相似文献   

16.
A graph G on at least 2n + 2 vertices in n-extendable if every set of n independent edges extends to (i.e., is a subset of) a perfect matching in G. It is known that no planar graph is 3-extendable. In the present paper we continue to study 2-extendability in the plane. Suppose independent edges e1 and e2 are such that the removal of their endvertices leaves at least one odd component Co. The subgraph G[V(Co) V(e1) V(e2)] is called a generalized butterfly (or gbutterfly). Clearly, a 2-extendable graph can contain no gbutterfly. The converse, however, is false.

We improve upon a previous result by proving that if G is 4-connected, locally connected and planar with an even number of vertices and has no gbutterfly, it is 2-extendable. Sharpness with respect to the various hypotheses of this result is discussed.  相似文献   


17.
Given a transitive orientation of a comparability graph G, a vertex of G is a source (sink) if it has indegree (outdegree) zero in , respectively. A source set of G is a subset of vertices formed by sources of some transitive orientation . A pair of subsets S,TV(G) is a source–sink pair of G when the vertices of S and T are sources and sinks, of some transitive orientation , respectively. We describe algorithms for finding a transitive orientation with a maximum source–sink pair in a comparability graph. The algorithms are applications of modular decomposition and are all of linear-time complexity.  相似文献   

18.
Given a graph G and a positive integer k, denote by G[k] the graph obtained from G by replacing each vertex of G with an independent set of size k. A graph G is called pseudo-k Hamiltonian-connected if G[k] is Hamiltonian-connected, i.e., every two distinct vertices of G[k] are connected by a Hamiltonian path. A graph G is called pseudo Hamiltonian-connected if it is pseudo-k Hamiltonian-connected for some positive integer k. This paper proves that a graph G is pseudo-Hamiltonian-connected if and only if for every non-empty proper subset X of V(G), |N(X)|>|X|. The proof of the characterization also provides a polynomial-time algorithm that decides whether or not a given graph is pseudo-Hamiltonian-connected. The characterization of pseudo-Hamiltonian-connected graphs also answers a question of Richard Nowakowski, which motivated this paper.  相似文献   

19.
Covering a graph by complete bipartite graphs   总被引:1,自引:0,他引:1  
《Discrete Mathematics》1997,170(1-3):249-251
We prove the following theorem: the edge set of every graph G on n vertices can be partitioned into the disjoint union of complete bipartite graphs such that each vertex is contained by at most c(n/log n) of the bipartite graphs.  相似文献   

20.
A graph G = G(V, E) with lists L(v), associated with its vertices v V, is called L-list colourable if there is a proper vertex colouring of G in which the colour assigned to a vertex v is chosen from L(v). We say G is k-choosable if there is at least one L-list colouring for every possible list assignment L with L(v) = k v V(G).

Now, let an arbitrary vertex v of G be coloured with an arbitrary colour f of L(v). We investigate whether the colouring of v can be continued to an L-list colouring of the whole graph. G is called free k-choosable if such an L-list colouring exists for every list assignment L (L(v) = k v V(G)), every vertex v and every colour f L(v). We prove the equivalence of the well-known conjecture of Erd s et al. (1979): “Every planar graph is 5-choosable” with the following conjecture: “Every planar graph is free 5-choosable”.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号