首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An acyclic graphoidal cover of a graph G is a collection ψ of paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by ηa. In this paper we characterize the class of graphs G for which ηa=Δ−1 where Δ is the maximum degree of a vertex in G.  相似文献   

2.
Remarks on the bondage number of planar graphs   总被引:4,自引:0,他引:4  
The bondage number b(G) of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than the domination number γ(G) of G. In 1998, J.E. Dunbar, T.W. Haynes, U. Teschner, and L. Volkmann posed the conjecture b(G)Δ(G)+1 for every nontrivial connected planar graph G. Two years later, L. Kang and J. Yuan proved b(G)8 for every connected planar graph G, and therefore, they confirmed the conjecture for Δ(G)7. In this paper we show that this conjecture is valid for all connected planar graphs of girth g(G)4 and maximum degree Δ(G)5 as well as for all not 3-regular graphs of girth g(G)5. Some further related results and open problems are also presented.  相似文献   

3.
Let G be a simple graph. The size of any largest matching in G is called the matching number of G and is denoted by ν(G). Define the deficiency of G, def(G), by the equation def(G)=|V(G)|−2ν(G). A set of points X in G is called an extreme set if def(GX)=def(G)+|X|. Let c0(G) denote the number of the odd components of G. A set of points X in G is called a barrier if c0(GX)=def(G)+|X|. In this paper, we obtain the following:

(1) Let G be a simple graph containing an independent set of size i, where i2. If X is extreme in G for every independent set X of size i in G, then there exists a perfect matching in G.

(2) Let G be a connected simple graph containing an independent set of size i, where i2. Then X is extreme in G for every independent set X of size i in G if and only if G=(U,W) is a bipartite graph with |U|=|W|i, and |Γ(Y)||U|−i+m+1 for any Y U, |Y|=m (1mi−1).

(3) Let G be a connected simple graph containing an independent set of size i, where i2. Then X is a barrier in G for every independent set X of size i in G if and only if G=(U,W) is a bipartite graph with |U|=|W|=i, and |Γ(Y)|m+1 for any Y U, |Y|=m (1mi−1).  相似文献   


4.
An acyclic graphoidal cover of a graph G is a collection ψ of paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by ηa. A path partition of a graph G is a collection P of paths in G such that every edge of G is in exactly one path in P. The minimum cardinality of a path partition of G is called the path partition number of G and is denoted by π. In this paper we determine ηa and π for several classes of graphs and obtain a characterization of all graphs with Δ 4 and ηa = Δ − 1. We also obtain a characterization of all graphs for which ηa = π.  相似文献   

5.
Given a graph G and a positive integer d, an L(d,1)-labeling of G is a function f that assigns to each vertex of G a non-negative integer such that if two vertices u and v are adjacent, then |f(u)−f(v)|d; if u and v are not adjacent but there is a two-edge path between them, then |f(u)−f(v)|1. The L(d,1)-number of G, λd(G), is defined as the minimum m such that there is an L(d,1)-labeling f of G with f(V){0,1,2,…,m}. Motivated by the channel assignment problem introduced by Hale (Proc. IEEE 68 (1980) 1497–1514), the L(2,1)-labeling and the L(1,1)-labeling (as d=2 and 1, respectively) have been studied extensively in the past decade. This article extends the study to all positive integers d. We prove that λd(G2+(d−1)Δ for any graph G with maximum degree Δ. Different lower and upper bounds of λd(G) for some families of graphs including trees and chordal graphs are presented. In particular, we show that the lower and the upper bounds for trees are both attainable, and the upper bound for chordal graphs can be improved for several subclasses of chordal graphs.  相似文献   

6.
An algorithm for finding maximal chordal subgraphs is developed that has worst-case time complexity of O(|E|Δ), where |E| is the number of edges in G and Δ is the maximum vertex degree in G. The study of maximal chordal subgraphs is motivated by their usefulness as computationally efficient structures with which to approximate a general graph. Two examples are given that illustrate potential applications of maximal chordal subgraphs. One provides an alternative formulation to the maximum independent set problem on a graph. The other involves a novel splitting scheme for solving large sparse systems of linear equations.  相似文献   

7.
Let G be an infinite locally finite connected graph. We study the reconstructibility of G in relation to the structure of its end set . We prove that an infinite locally finite connected graph G is reconstructible if there exists a finite family i)0i (n2) of pairwise finitely separable subsets of such that, for all x,y,x′,yV(G) and every isomorphism f of G−{x,y} onto G−{x′,y′} there is a permutation π of {0,…,n−1} such that for 0i<n. From this theorem we deduce, as particular consequences, that G is reconstructible if it satisfies one of the following properties: (i) G contains no end-respecting subdivision of the dyadic tree and has at least two ends of maximal order; (ii) the set of thick ends or the one of thin ends of G is finite and of cardinality greater than one. We also prove that if almost all vertices of G are cutvertices, then G is reconstructible if it contains a free end or if it has at least a vertex which is not a cutvertex.  相似文献   

8.
For any positive integer n and any graph G a set D of vertices of G is a distance-n dominating set, if every vertex vV(G)−D has exactly distance n to at least one vertex in D. The distance-n domination number γ=n(G) is the smallest number of vertices in any distance-n dominating set. If G is a graph of order p and each vertex in G has distance n to at least one vertex in G, then the distance-n domination number has the upper bound p/2 as Ore's upper bound on the classical domination number. In this paper, a characterization is given for graphs having distance-n domination number equal to half their order, when the diameter is greater or equal 2n−1. With this result we confirm a conjecture of Boland, Haynes, and Lawson.  相似文献   

9.
The following results are obtained. (i) Let p, d, and k be fixed positive integers, and let G be a graph whose vertex set can be partitioned into parts V1, V2,…, Va such that for each i at most d vertices in V1Vi have neighbors in Vi+1 and r(Kk, Vi) p | V(G) |, where Vi denotes the subgraph of G induced by Vi. Then there exists a number c depending only on p, d, and k such that r(Kk, G)c | V(G) |. (ii) Let d be a positive integer and let G be a graph in which there is an independent set I V(G) such that each component of GI has at most d vertices and at most two neighbors in I. Then r(G,G)c | V(G) |, where c is a number depending only on d. As a special case, r(G, G) 6 | V(G) | for a graph G in which all vertices of degree at least three are independent. The constant 6 cannot be replaced by one less than 4.  相似文献   

10.
We study the concept of strong equality of domination parameters. Let P1 and P2 be properties of vertex subsets of a graph, and assume that every subset of V(G) with property P2 also has property P1. Let ψ1(G) and ψ2(G), respectively, denote the minimum cardinalities of sets with properties P1 and P2, respectively. Then ψ1(G2(G). If ψ1(G)=ψ2(G) and every ψ1(G)-set is also a ψ2(G)-set, then we say ψ1(G) strongly equals ψ2(G), written ψ1(G)≡ψ2(G). We provide a constructive characterization of the trees T such that γ(T)≡i(T), where γ(T) and i(T) are the domination and independent domination numbers, respectively. A constructive characterization of the trees T for which γ(T)=γt(T), where γt(T) denotes the total domination number of T, is also presented.  相似文献   

11.
In a previous work, the authors introduced the class of graphs with bounded induced distance of order k (BID(k) for short), to model non-reliable interconnection networks. A network modeled as a graph in BID(k) can be characterized as follows: if some nodes have failed, as long as two nodes remain connected, the distance between these nodes in the faulty graph is at most k times the distance in the non-faulty graph. The smallest k such that GBID(k) is called stretch number of G. We show an odd characteristic of the stretch numbers: every rational number greater or equal 2 is a stretch number, but only discrete values are admissible for smaller stretch numbers. Moreover, we give a new characterization of classes BID(2−1/i), i1, based on forbidden induced subgraphs. By using this characterization, we provide a polynomial time recognition algorithm for graphs belonging to these classes, while the general recognition problem is Co-NP-complete.  相似文献   

12.
The problem of building larger graphs with a given graph as an induced subgraph is one which can arise in various applications and in particular can be important when constructing large communications networks from smaller ones. What one can conclude from this paper is that generalized prisms over G may provide an important such construction because the connectivity of the newly created graph is larger than that of the original (connected) graph, regardless of the permutation used.

For a graph G with vertices labeled 1,2,…, n and a permutation in Sn, the generalized prisms over G, (G) (also called a permutation graph), consists of two copies of G, say Gx and Gy, along with the edges (xi, y(i), for 1≤in. The purpose of this paper is to examine the connectivity of generalized prisms over G. In particular, upper and lower bounds are found. Also, the connectivity and edge-connectivity are determined for generalized prisms over trees, cycles, wheels, n-cubes, complete graphs, and complete bipartite graphs. Finally, the connectivity of the generalized prism over G, (G), is determined for all in the automorphism group of G.  相似文献   


13.
This paper addresses the problem of finding rectangular drawings of plane graphs, in which each vertex is drawn as a point, each edge is drawn as a horizontal or a vertical line segment, and the contour of each face is drawn as a rectangle. A graph is a 2–3 plane graph if it is a plane graph and each vertex has degree 3 except the vertices on the outer face which have degree 2 or 3. A necessary and sufficient condition for the existence of a rectangular drawing has been known only for the case where exactly four vertices of degree 2 on the outer face are designated as corners in a 2–3 plane graph G. In this paper we establish a necessary and sufficient condition for the existence of a rectangular drawing of G for the general case in which no vertices are designated as corners. We also give a linear-time algorithm to find a rectangular drawing of G if it exists.  相似文献   

14.
Path–distance–width of a graph G=(V,E), denoted by pdw(G), is the minimum integer k satisfying that there is a nonempty subset of SV such that the number of the nodes with distance i from S is at most k for any nonnegative integer i. It is known that given a positive integer k and a graph G, the decision problem pdw(G)k is NP-complete even if G is a tree (Yamazaki et al. Lecture Notes in Computer Science, vol. 1203, Springer, Berlin, 1997, pp. 276–287). In this paper, we show that it is NP-hard to approximate the path–distance–width of a graph within a ratio for any >0, even for trees.  相似文献   

15.
Generalization of two results of Hilton on total-colourings of a graph   总被引:1,自引:0,他引:1  
H. P. Yap 《Discrete Mathematics》1995,140(1-3):245-252
We generalize two results of Hilton on total-colourings of a graph. The first generalized result unifies several previous results/proof techniques of Bermond, Chen, Chew, Fu, Hilton, Wang, and Yap. Applying the second generalized result, we prove that if G Kn, n is such that Δ(G) = n − 1 and the complement of G with respect to Kn, n contains a 1-factor, then its total chromatic number is Δ(G) + 1.  相似文献   

16.
For each positive integer k we consider the smallest positive integer f(k) (dependent only on k) such that the following holds: Each connected graph G with chromatic number χ(G) = k can be properly vertex colored by k colors so that for each pair of vertices xo and xp in any color class there exist vertices x1, x2, …, xp-1 of the same class with dist(xi, xi+1) f(k) for each i, 0 i p − 1. Thus, the graph is k-colorable with the vertices of each color class placed throughout the graph so that no subset of the class is at a distance > f(k) from the remainder of the class.

We prove that f(k) < 12k when the order of the graph is k(k − 2) + 1.  相似文献   


17.
Wang  Tao  Liu  Ming Ju  Li  De Ming 《数学学报(英文版)》2019,35(11):1817-1826
Let G be a graph with vertex set V (G), edge set E(G) and maximum degree Δ respectively. G is called degree-magic if it admits a labelling of the edges by integers {1, 2, …,|E(G)|} such that for any vertex v the sum of the labels of the edges incident with v is equal to (1+|E(G)|)/2·d(v), where d(v) is the degree of v. Let f be a proper edge coloring of G such that for each vertex vV (G),|{e:eEv, f(e) ≤ Δ/2}|=|{e:eEv, f(e) > Δ/2}|, and such an f is called a balanced edge coloring of G. In this paper, we show that if G is a supermagic even graph with a balanced edge coloring and m ≥ 1, then (2m + 1)G is a supermagic graph. If G is a d-magic even graph with a balanced edge coloring and n ≥ 2, then nG is a d-magic graph. Results in this paper generalise some known results.  相似文献   

18.
A weighted graph (G,w) is a graph G together with a positive weight-function on its vertex set w : V(G)→R>0. The weighted domination number γw(G) of (G,w) is the minimum weight w(D)=∑vDw(v) of a set DV(G) such that every vertex xV(D)−D has a neighbor in D. If ∑vV(G)w(v)=|V(G)|, then we speak of a normed weighted graph. Recently, we proved that
for normed weighted bipartite graphs (G,w) of order n such that neither G nor the complement has isolated vertices. In this paper we will extend these Nordhaus–Gaddum-type results to triangle-free graphs.  相似文献   

19.
Toru Kojima   《Discrete Mathematics》2003,270(1-3):299-309
The bandwidth B(G) of a graph G is the minimum of the quantity max{|f(x)−f(y)| : xyE(G)} taken over all proper numberings f of G. The composition of two graphs G and H, written as G[H], is the graph with vertex set V(GV(H) and with (u1,v1) is adjacent to (u2,v2) if either u1 is adjacent to u2 in G or u1=u2 and v1 is adjacent to v2 in H. In this paper, we investigate the bandwidth of the composition of two graphs. Let G be a connected graph. We denote the diameter of G by D(G). For two distinct vertices x,yV(G), we define wG(x,y) as the maximum number of internally vertex-disjoint (x,y)-paths whose lengths are the distance between x and y. We define w(G) as the minimum of wG(x,y) over all pairs of vertices x,y of G with the distance between x and y is equal to D(G). Let G be a non-complete connected graph and let H be any graph. Among other results, we prove that if |V(G)|=B(G)D(G)−w(G)+2, then B(G[H])=(B(G)+1)|V(H)|−1. Moreover, we show that this result determines the bandwidth of the composition of some classes of graphs composed with any graph.  相似文献   

20.
We discuss several results concerning on-line algorithms for ordered sets and comparability graphs. The main new result is on the problem of on-line transitive orientation. We view on-line transitive orientation of a comparability graph G as a two-person game. In the ith round of play, 1 i | V(G)|, player A names a graph Gi such that Gi is isomorphic to a subgraph of G, |V(Gi)| = i, and Gi−1 is an induced subgraph of Gi if i> 1. Player B must respond with a transitive orientation of Gi which extends the transitive orientation given to Gi−1 in the previous round of play. Player A wins if and only if player B fails to give a transitive orientation to Gi for some i, 1 i |V(G)|. Our main result shows that player A has at most three winning moves. We also discuss applications to on-line clique covering of comparability graphs, and we mention some open problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号