首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graph is singular of nullity η if zero is an eigenvalue of its adjacency matrix with multiplicity η. If η(G)=1, then the core of G is the subgraph induced by the vertices associated with the non-zero entries of the zero-eigenvector. A connected subgraph of G with the least number of vertices and edges, that has nullity one and the same core as G, is called a minimal configuration. A subdivision of a graph G is obtained by inserting a vertex on every edge of G. We review various properties of minimal configurations. In particular, we show that a minimal configuration is a tree if and only if it is a subdivision of some other tree.  相似文献   

2.
Subgraph distances in graphs defined by edge transfers   总被引:1,自引:0,他引:1  
For two edge-induced subgraphs F and H of the same size in a graph G, the subgraph H can be obtained from F by an edge jump if there exist four distinct vertices u, v, w, and x in G such that uv ε E(F), wx ε E(G) - E(F), and H = F - uv + wx. The subgraph F is j-transformed into H if H can be obtained from F by a sequence of edge jumps. Necessary and sufficient conditions are presented for a graph G to have the property that every edge-induced subgraph of a fixed size in G can be j-transformed into every other edge-induced subgraph of that size. The minimum number of edge jumps required to transform one subgraph into another is called the jump distance. This distance is a metric and can be modeled by a graph. The jump graph J(G) of a graph G is defined as that graph whose vertices are the edges of G and where two vertices of J(G) are adjacent if and only if the corresponding edges of G are independent. For a given graph G, we consider the sequence {{Jk(G)}} of iterated jump graphs and classify each graph as having a convergent, divergent, or terminating sequence.  相似文献   

3.
A graph G is packable by the graph F if its edges can be partitioned into copies of F. If deleting the edges of any F-packable subgraph from G leaves an F-packable graph, then G is randomly F-packable. If G is F-packable but not randomly F-packable then G is F-forbidden. The minimal F-forbidden graphs provide a characterization of randomly F-packable graphs. We show that for each ρ-connected ρ-regular graph F with ρ > 1, there is a set (F) of minimal F-forbidden graphs of a simple form, such that any other minimal F-forbidden graph can be obtained from a graph in (F) by a process of identifying vertices and removing copies of F. When F is a connected strongly edge-transitive graph having more than one edge (such as a cycle or hypercube), there is only one graph in (F).  相似文献   

4.
Let G be an infinite locally finite connected graph. We study the reconstructibility of G in relation to the structure of its end set . We prove that an infinite locally finite connected graph G is reconstructible if there exists a finite family i)0i (n2) of pairwise finitely separable subsets of such that, for all x,y,x′,yV(G) and every isomorphism f of G−{x,y} onto G−{x′,y′} there is a permutation π of {0,…,n−1} such that for 0i<n. From this theorem we deduce, as particular consequences, that G is reconstructible if it satisfies one of the following properties: (i) G contains no end-respecting subdivision of the dyadic tree and has at least two ends of maximal order; (ii) the set of thick ends or the one of thin ends of G is finite and of cardinality greater than one. We also prove that if almost all vertices of G are cutvertices, then G is reconstructible if it contains a free end or if it has at least a vertex which is not a cutvertex.  相似文献   

5.
Every graph can be represented as the intersection graph on a family of closed unit cubes in Euclidean space En. Cube vertices have integer coordinates. The coordinate matrix, A(G)={vnk} of a graph G is defined by the set of cube coordinates. The imbedded dimension of a graph, Bp(G), is a number of columns in matrix A(G) such that each of them has at least two distinct elements vnkvpk. We show that Bp(G)=cub(G) for some graphs, and Bp(G)n−2 for any graph G on n vertices. The coordinate matrix uses to obtain the graph U of radius 1 with 3n−2 vertices that contains as an induced subgraph a copy of any graph on n vertices.  相似文献   

6.
Let G be a graph in which each edge is contained in at least one triangle (complete subgraph on three vertices). We investigate relationships between the smallest cardinality of an edge set containing at least i edges of each triangle and the largest cardinality of an edge set containing at most j edges of each triangle (i, j ε {1,2}), and also compare those invariants with the numbers of vertices and edges in G. Several open problems are raised in the concluding section.  相似文献   

7.
Let β(G), Γ(G) and IR(G) be the independence number, the upper domination number and the upper irredundance number, respectively. A graph G is calledΓ-perfect if β(H) = Γ(H), for every induced subgraph H of G. A graph G is called IR-perfect if Γ(H) = IR(H), for every induced subgraph H of G. In this paper, we present a characterization of Γ-perfect graphs in terms of a family of forbidden induced subgraphs, and show that the class of Γ-perfect graphs is a subclass of IR-perfect graphs and that the class of absorbantly perfect graphs is a subclass of Γ-perfect graphs. These results imply a number of known theorems on Γ-perfect graphs and IR-perfect graphs. Moreover, we prove a sufficient condition for a graph to be Γ-perfect and IR-perfect which improves a known analogous result.  相似文献   

8.
M. Kano  Gyula Y. Katona   《Discrete Mathematics》2002,250(1-3):265-272
Let G be a graph and f : V(G)→{1,3,5,…}. Then a subgraph H of G is called a (1,f)-odd subgraph if degH(x){1,3,…,f(x)} for all xV(H). If f(x)=1 for all xV(G), then a (1,f)-odd subgraph is nothing but a matching. A (1,f)-odd subgraph H of G is said to be maximum if G has no (1,f)-odd subgraph K such that |K|>|H|. We show that (1,f)-odd subgraphs have some properties similar to those of matchings, in particular, we give a formula for the order of a maximum (1,f)-odd subgraph, which is similar to that for the order of a maximum matching.  相似文献   

9.
Bipartite dimensions and bipartite degrees of graphs   总被引:2,自引:0,他引:2  
A cover (bipartite) of a graph G is a family of complete bipartite subgraphs of G whose edges cover G's edges. G'sbipartite dimension d(G) is the minimum cardinality of a cover, and its bipartite degree η(G) is the minimum over all covers of the maximum number of covering members incident to a vertex. We prove that d(G) equals the Boolean interval dimension of the irreflexive complement of G, identify the 21 minimal forbidden induced subgraphs for d 2, and investigate the forbidden graphs for d n that have the fewest vertices. We note that for complete graphs, d(Kn) = [log2n], η(Kn) = d(Kn) for n 16, and η(Kn) is unbounded. The list of minimal forbidden induced subgraphs for η 2 is infinite. We identify two infinite families in this list along with all members that have fewer than seven vertices.  相似文献   

10.
A graph G with n vertices is said to be embeddable (in its complement) if there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))=. It is known that all trees T with n (≥2) vertices and T K1,n−1 are embeddable. We say that G is 1-embeddable if, for every edge e, there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))={e};and that it is 2-embeddable if,for every pair e1, e2 of edges, there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))={e1, e2}. We prove here that all trees with n (3) vertices are 1-embeddable; and that all trees T with n (4) vertices and T K1,n−1 are 2-embeddable. In a certain sense, this result is sharp.  相似文献   

11.
An L(2,1)-coloring of a graph G is a coloring of G's vertices with integers in {0,1,…,k} so that adjacent vertices’ colors differ by at least two and colors of distance-two vertices differ. We refer to an L(2,1)-coloring as a coloring. The span λ(G) of G is the smallest k for which G has a coloring, a span coloring is a coloring whose greatest color is λ(G), and the hole index ρ(G) of G is the minimum number of colors in {0,1,…,λ(G)} not used in a span coloring. We say that G is full-colorable if ρ(G)=0. More generally, a coloring of G is a no-hole coloring if it uses all colors between 0 and its maximum color. Both colorings and no-hole colorings were motivated by channel assignment problems. We define the no-hole span μ(G) of G as ∞ if G has no no-hole coloring; otherwise μ(G) is the minimum k for which G has a no-hole coloring using colors in {0,1,…,k}.

Let n denote the number of vertices of G, and let Δ be the maximum degree of vertices of G. Prior work shows that all non-star trees with Δ3 are full-colorable, all graphs G with n=λ(G)+1 are full-colorable, μ(G)λ(G)+ρ(G) if G is not full-colorable and nλ(G)+2, and G has a no-hole coloring if and only if nλ(G)+1. We prove two extremal results for colorings. First, for every m1 there is a G with ρ(G)=m and μ(G)=λ(G)+m. Second, for every m2 there is a connected G with λ(G)=2m, n=λ(G)+2 and ρ(G)=m.  相似文献   


12.
A (finite or infinite) graph G is strongly dismantlable if its vertices can be linearly ordered x0,…, x so that, for each ordinal β < , there exists a strictly increasing finite sequence (ij)0 j n of ordinals such that i0 = β, in = and xij+1 is adjacent with xij and with all neighbors of xij in the subgraph ofG induced by {xy: β γ }. We show that the Helly number for the geodesic convexity of such a graph equals its clique number. This generalizes a result of Bandelt and Mulder (1990) for dismantlable graphs. We also get an analogous equality dealing with infinite families of convex sets.  相似文献   

13.
Let G be a connected graph with v(G) 2 vertices and independence number (G). G is critical if for any edge e of G:

1. (i) (Ge) > (G), if e is not a cut edge of G, and

2. (ii) v(Gi) − (Gi) < v(G) − (G), I = 1, 2, if e is a cut edge and G1, G2 are the two components of Ge.

Recently, Katchalski et al. (1995) conjectured that: if G is a connected critical graph, then with equality possible if and only if G is a tree. In this paper we establish this conjecture.  相似文献   


14.
Let G be a graph with a nonempty edge set, and with rank rk(G), term rank Rk(G), and chromatic number χ(G). We characterize Rk(G) as being the maximum number of colors in certain proper colorings of G. In particular, we observe that χ(G)Rk(G), with equality holding if and only if (besides isolated vertices) G is either complete or a star. For a twin-free graph G, we observe the bound and we show that this bound is sharp.  相似文献   

15.
A graph is called supereulerian if it has a spanning closed trail. Let G be a 2-edge-connected graph of order n such that each minimal edge cut SE(G) with |S|3 satisfies the property that each component of GS has order at least (n−2)/5. We prove that either G is supereulerian or G belongs to one of two classes of exceptional graphs. Our results slightly improve earlier results of Catlin and Li. Furthermore, our main result implies the following strengthening of a theorem of Lai within the class of graphs with minimum degree δ4: If G is a 2-edge-connected graph of order n with δ(G)4 such that for every edge xyE(G) , we have max{d(x),d(y)}(n−2)/5−1, then either G is supereulerian or G belongs to one of two classes of exceptional graphs. We show that the condition δ(G)4 cannot be relaxed.  相似文献   

16.
An acyclic graphoidal cover of a graph G is a collection ψ of paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by ηa. A path partition of a graph G is a collection P of paths in G such that every edge of G is in exactly one path in P. The minimum cardinality of a path partition of G is called the path partition number of G and is denoted by π. In this paper we determine ηa and π for several classes of graphs and obtain a characterization of all graphs with Δ 4 and ηa = Δ − 1. We also obtain a characterization of all graphs for which ηa = π.  相似文献   

17.
Graph spectra     
The k-spectrum sk(G) of a graph G is the set of all positive integers that occur as the size of an induced k-vertex subgraph of G. In this paper we determine the minimum order and size of a graph G with sk (G) = {0, 1, …,(2k)} and consider the more general question of describing those sets S {0,1, … ,(2k)} such that S = sk(G) for some graph G.  相似文献   

18.
For a graph G of size m1 and edge-induced subgraphs F and H of size k (1km), the subgraph H is said to be obtained from F by an edge jump if there exist four distinct vertices u,v,w, and x in G such that uvE(F), wxE(G)−E(F), and H=Fuv+wx. The minimum number of edge jumps required to transform F into H is the k-jump distance from F to H. For a graph G of size m1 and an integer k with 1km, the k-jump graph Jk(G) is that graph whose vertices correspond to the edge-induced subgraphs of size k of G and where two vertices of Jk(G) are adjacent if and only if the k-jump distance between the corresponding subgraphs is 1. All connected graphs G for which J2(G) is planar are determined.  相似文献   

19.
An acyclic graphoidal cover of a graph G is a collection ψ of paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by ηa. In this paper we characterize the class of graphs G for which ηa=Δ−1 where Δ is the maximum degree of a vertex in G.  相似文献   

20.
Given graph G=(V,E) on n vertices, the profile minimization problem is to find a one-to-one function f:V→{1,2,…,n} such that ∑vV(G){f(v)−minxN[v] f(x)} is as small as possible, where N[v]={v}{x: x is adjacent to v} is the closed neighborhood of v in G. The trangulated triangle Tl is the graph whose vertices are the triples of non-negative integers summing to l, with an edge connecting two triples if they agree in one coordinate and differ by 1 in the other two coordinates. This paper provides a polynomial time algorithm to solve the profile minimization problem for trangulated triangles Tl with side-length l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号