首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the exponential stabilization and L2‐gain for a class of uncertain switched nonlinear systems with interval time‐varying delay. Based on Lyapunov–Krasovskii functional method, novel delay‐dependent sufficient conditions of exponential stabilization for a class of uncertain switched nonlinear delay systems are developed under an average dwell time scheme. Then, novel criteria to ensure the exponential stabilization with weighted L2‐gain performance for a class of uncertain switched nonlinear delay systems are established. Furthermore, an effective method is proposed for the designing of a stabilizing feedback controller with L2‐gain performance. Finally, some numerical examples are given to illustrate the effectiveness of the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
3.
This paper considers the problems of the robust stability analysis and H controller synthesis for uncertain discrete‐time switched systems with interval time‐varying delay and nonlinear disturbances. Based on the system transformation and by introducing a switched Lyapunov‐Krasovskii functional, the novel sufficient conditions, which guarantee that the uncertain discrete‐time switched system is robust asymptotically stable are obtained in terms of linear matrix inequalities. Then, the robust H control synthesis via switched state feedback is studied for a class of discrete‐time switched systems with uncertainties and nonlinear disturbances. We designed a switched state feedback controller to stabilize asymptotically discrete‐time switched systems with interval time‐varying delay and H disturbance attenuation level based on matrix inequality conditions. Examples are provided to illustrate the advantage and effectiveness of the proposed method.  相似文献   

4.
This study examines finite‐time synchronization for a class of N‐coupled complex partial differential systems (PDSs) with time‐varying delay. The problem of finite‐time synchronization for coupled drive‐response PDSs with time‐varying delay is similarly considered. The synchronization error dynamic of the PDSs is defined in the q‐dimensional spatial domain. We construct a feedback controller to achieve finite‐time synchronization. Sufficient conditions are derived by using the Lyapunov‐Krasoviskii stability approach and inequalities technology to ensure that the proposed networks achieve synchronization in finite time. The proposed systems demonstrate extensive application. Finally, an example is used to verify the theoretical results.  相似文献   

5.
This article investigates exponential stability of uncertain discrete‐time nonlinear switched systems with parameter uncertainties and randomly occurring delays via Takagi–Sugeno fuzzy approach. The randomness of time‐varying delay is characterized by introducing a Bernoulli stochastic variable that follows certain probability distribution. By adopting the average dwell‐time approach with Lyapunov–Krasovskii functional and using convex reciprocal lemma, delay‐dependent sufficient conditions for exponential stability of the switched fuzzy system are derived in terms of linear matrix inequalities (LMIs), which can be solved readily using any LMI solvers. Finally, illustrative examples are provided to demonstrate the effectiveness of the proposed approach. © 2014 Wiley Periodicals, Inc. Complexity 20: 49–61, 2015  相似文献   

6.
In this paper, the stabilization problem of switched control systems with time delay is investigated for both linear and nonlinear cases. First, a new global stabilizability concept with respect to state feedback and switching law is given. Then, based on multiple Lyapunov functions and delay inequalities, the state feedback controller and the switching law are devised to make sure that the resulting closed-loop switched control systems with time delay are globally asymptotically stable and exponentially stable.  相似文献   

7.
In this paper, we establish finite‐region stability (FRS) and finite‐region boundedness analysis methods to investigate the transient behavior of discrete two‐dimensional Roesser models. First, by building special recursive formulas, a sufficient FRS condition is built via solvable linear matrix inequalities constraints. Next, by designing state feedback controllers, the finite‐region stabilization issue is analyzed for the corresponding two‐dimensional closed‐loop system. Similar to FRS analysis, the finite‐region boundedness problem is addressed for Roesser models with exogenous disturbances and corresponding criteria, and linear matrix inequalities conditions are reported. To conclude the paper, we provide numerical examples to confirm the validity of the proposed methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
讨论了一类分数阶微分中立型系统的有限时间状态反馈镇定性及有界性问题.利用Gronwall 不等式, 获得了使得系统有限时间状态反馈镇定及有限时间有界的充分性条件.  相似文献   

9.
In this paper, we study the qualitative properties of linear and nonlinear delay switched systems which have stable and unstable subsystems. First, we prove some inequalities which lead to the switching laws that guarantee: (a) the global exponential stability to linear switched delay systems with stable and unstable subsystems; (b) the local exponential stability of nonlinear switched delay systems with stable and unstable subsystems. In addition, these switching laws indicate that if the total activation time ratio among the stable subsystems, unstable subsystems and time delay is larger than a certain number, the switched systems are exponentially stable for any switching signals under these laws. Some examples are given to illustrate the main results.  相似文献   

10.
In this paper, the problem of internal finite‐time stabilization for 1‐D coupled wave equations with interior point mass is handled. The nonlinear stabilizing feedback law leads, in closed‐loop, to nonlinear evolution equations where Kato theory is used to prove the well‐posedness. In addition, it is showed that in some cases, the solution of this hybrid system is constant in finite‐time if we use Neumann boundary conditions. This result can be improved (in complete finite‐time stability sense) if we change the above feedback.  相似文献   

11.
Saleh Mobayen 《Complexity》2015,21(2):239-244
This article investigates a novel fast terminal sliding mode control approach combined with global sliding surface structure for the robust tracking control of nonlinear second‐order systems with time‐varying uncertainties. The suggested control technique is formulated based on the Lyapunov stability theory and guarantees the existence of the sliding mode around the sliding surface in a finite time. Using the new form of switching surface, the reaching phase elimination and the robustness improvement of the whole system are satisfied. Simulation results demonstrate the efficiency of the proposed technique. © 2014 Wiley Periodicals, Inc. Complexity 21: 239–244, 2015  相似文献   

12.
In recent years, control of nonlinear complex predator–prey systems has attracted the attention of many researchers. The previous works have some weaknesses such as neglecting the consideration of the effects of both model uncertainties and unknown parameters and having an infinite time of convergence. To overcome the mentioned shortages, this article solves the problem of robust control of nonlinear complex Holling type II predator–prey system in a given finite time. It is assumed that the parameters of the system are fully unknown in advance and some uncertainties perturb the system's dynamics. To tackle the system unknown parameters, some adaptation laws are introduced. Thereafter, a robust switching controller is proposed to finite‐timely stabilize the predator–prey system. An illustrative example demonstrates the efficiency and usefulness of the proposed control strategy. © 2015 Wiley Periodicals, Inc. Complexity 21: 260–266, 2016  相似文献   

13.
This article presents an adaptive sliding mode control (SMC) scheme for the stabilization problem of uncertain time‐delay chaotic systems with input dead‐zone nonlinearity. The algorithm is based on SMC, adaptive control, and linear matrix inequality technique. Using Lyapunov stability theorem, the proposed control scheme guarantees the stability of overall closed‐loop uncertain time‐delay chaotic system with input dead‐zone nonlinearity. It is shown that the state trajectories converge to zero asymptotically in the presence of input dead‐zone nonlinearity, time‐delays, nonlinear real‐valued functions, parameter uncertainties, and external disturbances simultaneously. The selection of sliding surface and the design of control law are two important issues, which have been addressed. Moreover, the knowledge of upper bound of uncertainties is not required. The reaching phase and chattering phenomenon are eliminated. Simulation results demonstrate the effectiveness and robustness of the proposed scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 13–20, 2016  相似文献   

14.
In this paper, a general class of impulsive delayed switched systems is considered. By employing the Lyapunov–Razumikhin method and some analysis techniques, we established several global asymptotic stability and global exponential stability criteria for the considered impulsive delayed switched systems, which improve and extend some recent works. As an application, the result of global exponential stability are used to study a class of uncertain linear switched systems with time‐varying delays. Several LMI‐based conditions are proposed to guarantee the global robust stability and global exponential stabilization. The designed memoryless state feedback controller can be easily checked by the LMI toolbox in Matlab. Moreover, the dwell time constraint is imposed for the switching law. Finally, two numerical examples and their simulations are given to show the effectiveness of our proposed results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The robust exponential stabilization for a class of the uncertain switched neutral nonlinear systems with time-varying delays based on the sampled-data control is investigated in this paper. The closed-loop system with sampled-data control is modeled as a continuous time system with a time-varying piecewise continuous control input delay. Considering the relationship between the sampling period and the dwell time of two switching instants, sampling interval with no switching and sampling interval with one switching are discussed, respectively. By Wirtinger-based inequality, Wirtinger-based double integral inequality, and free-weighting matrix technique, some delay-dependent sufficient conditions are given to guarantee the exponential stability of uncertain switched neutral nonlinear systems under asynchronous switching. In addition, sampled-data controllers can also be designed by special operations of matrices. Finally, two numerical examples are used to show the effectiveness of the approach proposed in this paper.  相似文献   

16.
In this note, a non‐standard finite difference (NSFD) scheme is proposed for an advection‐diffusion‐reaction equation with nonlinear reaction term. We first study the diffusion‐free case of this equation, that is, an advection‐reaction equation. Two exact finite difference schemes are constructed for the advection‐reaction equation by the method of characteristics. As these exact schemes are complicated and are not convenient to use, an NSFD scheme is derived from the exact scheme. Then, the NSFD scheme for the advection‐reaction equation is combined with a finite difference space‐approximation of the diffusion term to provide a NSFD scheme for the advection‐diffusion‐reaction equation. This new scheme could preserve the fixed points, the positivity, and the boundedness of the solution of the original equation. Numerical experiments verify the validity of our analytical results. Copyright © 2014 JohnWiley & Sons, Ltd.  相似文献   

17.
This article addresses the synchronization of nonlinear master–slave systems under input time‐delay and slope‐restricted input nonlinearity. The input nonlinearity is transformed into linear time‐varying parameters belonging to a known range. Using the linear parameter varying (LPV) approach, applying the information of delay range, using the triple‐integral‐based Lyapunov–Krasovskii functional and utilizing the bounds on nonlinear dynamics of the nonlinear systems, nonlinear matrix inequalities for designing a simple delay‐range‐dependent state feedback control for synchronization of the drive and response systems is derived. The proposed controller synthesis condition is transformed into an equivalent but relatively simple criterion that can be solved through a recursive linear matrix inequality based approach by application of cone complementary linearization algorithm. In contrast to the conventional adaptive approaches, the proposed approach is simple in design and implementation and is capable to synchronize nonlinear oscillators under input delays in addition to the slope‐restricted nonlinearity. Further, time‐delays are treated using an advanced delay‐range‐dependent approach, which is adequate to synchronize nonlinear systems with either higher or lower delays. Furthermore, the resultant approach is applicable to the input nonlinearity, without using any adaptation law, owing to the utilization of LPV approach. A numerical example is worked out, demonstrating effectiveness of the proposed methodology in synchronization of two chaotic gyro systems. © 2015 Wiley Periodicals, Inc. Complexity 21: 220–233, 2016  相似文献   

18.
This article focuses on the robust sampled‐data control for a class of uncertain switched neutral systems based on the average dwell‐time approach. In particular, the system is considered with probabilistic input delay using sampled state vectors, which are described by the stochastic variables with a Bernoulli distributed white sequence and time‐varying norm‐bounded uncertainties. By constructing a novel Lyapunov–Krasovskii functional which involves the lower and upper bounds of the delay, a new set of sufficient conditions are derived in terms of linear matrix inequalities for ensuring the robust exponential stability of the uncertain switched neutral system about its equilibrium point. Moreover, based on the stability criteria, a state feedback sampled‐data control law is designed for the considered system. Finally, a numerical example based on the water‐quality dynamic model for the Nile River is given to illustrate the effectiveness of the proposed design technique. © 2015 Wiley Periodicals, Inc. Complexity 21: 308–318, 2016  相似文献   

19.
This article deals with the problem of robust stochastic asymptotic stability for a class of uncertain stochastic neural networks with distributed delay and multiple time‐varying delays. It is noted that the reciprocally convex approach has been intensively used in stability analysis for time‐delay systems in the past few years. We will extend the approach from deterministic time‐delay systems to stochastic time‐delay systems. And based on the new technique dealing with matrix cross‐product and multiple‐interval‐dependent Lyapunov–Krasovskii functional, some novel delay‐dependent stability criteria with less conservatism and less decision variables for the addressed system are derived in terms of linear matrix inequalities. At last, several numerical examples are given to show the effectiveness of the results. © 2014 Wiley Periodicals, Inc. Complexity 21: 147–162, 2015  相似文献   

20.
In this article, the finite‐time stochastic stability of fractional‐order singular systems with time delay and white noise is investigated. First the existence and uniqueness of solution for the considered system is derived using the basic fractional calculus theory. Then based on the Gronwall's approach and stochastic analysis technique, the sufficient condition for the finite‐time stability criterion is developed. Finally, a numerical example is presented to verify the obtained theory. © 2016 Wiley Periodicals, Inc. Complexity 21: 370–379, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号