首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
直接甲酸燃料电池(DFAFCs)是一种很有前景的可用于移动电子设备的电源. 钯对甲酸电催化氧化有很高的活性,但稳定性较差,容易失活;铂对甲酸电催化氧化的活性低于钯,但稳定性好. 前期研究表明,高指数晶面铂纳米粒子对甲酸的电催化氧化活性显著高于低指数晶面铂纳米粒子. 本文以碳纸为载体,应用方波电位法生长高指数晶面铂纳米粒子(HIF-Pt/C-paper),通过改变方波上下限电位,合成出不同粒径的二十四面体和偏方三八面体铂纳米粒子. 进一步在碳纸上修饰一层碳黑微孔层并优化电沉积条件,制备出粒径约10 nm,载量0.069 mg•cm-2的HIF-Pt/C-paper作为DFAFCs的阳极催化剂.在甲酸浓度为3M时,测得30℃下单电池最大功率密度10.6 mW•cm-2,最大质量功率密度153.5 mW•mg-1Pt,是以1mg•cm-2 载量的商业60 wt% Pt/C为阳极催化剂的电池的8.4倍. HIF-Pt/C-paper阳极DFAFCs在20 mA•cm-2条件下运行50 h,电压保持率为95%,显示出很好的稳定性.  相似文献   

2.
纳米碳纤维载铂作为质子交换膜燃料电池阳极催化剂   总被引:1,自引:0,他引:1  
采用化学还原法合成了微结构不同的纳米碳纤维(板式、鱼骨式、管式)载铂催化剂(分别记为Pt/p-CNF、Pt/f-CNF、Pt/t-CNF). 通过高分辨透射电镜(HRTEM)和X射线衍射(XRD)等分析技术对催化剂的微观结构进行了表征, 并利用循环伏安(CV)法分析了催化剂的电化学比表面积(ESA). 在此基础上, 制备了膜电极(MEA), 通过单电池测试了催化剂的电催化性能. 结果表明: 铂纳米粒子在不同的纳米碳载体上表现出不同的粒径, 在板式、鱼骨式和管式纳米碳纤维上的铂纳米粒子平均粒径分别为2.4、2.7和2.8 nm. 板式纳米碳纤维载铂催化剂作单电池阳极时表现出良好的电催化性能, 其对应的最高功率密度可达0.569 W·cm-2, 高于鱼骨式纳米碳纤维载铂催化剂和管式纳米碳纤维载铂催化剂对应的最高功率密度(分别为0.550和0.496 W·cm-2). 同时, 也制备了碳黑(Pt/XC-72)载铂催化剂. 相比于Pt/XC-72, 纳米碳纤维载体上的铂纳米颗粒有较小的粒径、较好的分散和较高的催化活性, 说明纳米碳纤维是质子交换膜燃料电池(PEMFCs)催化剂的良好载体.  相似文献   

3.
李赏  周芬  陈磊  潘牧 《电化学》2016,22(2):129
质子交换膜燃料电池的商业化应用迫切要求降低其Pt载量. 本文通过Pt/C氧还原电极的动力学模型计算,研究了Pt/C电极中的氧分布、生成电流以及满足实际应用的最小Pt载量. 结果表明:燃料电池Pt/C电极,阴极产生严重浓差极化的催化层厚度为40mm;功率密度达到1.4 W•cm-2(2.1 A•cm-2@0.67 V)的电池性能需要3mm左右的Pt/C阴极催化层,阴极Pt载量为0.122 mg•cm-2,即可使膜电极的阴极铂用量低于0.087 g•kW-1.  相似文献   

4.
通过调制脉冲电流在质子交换树脂(Nafion)粘接的无催化多孔碳电极(UCE)上电沉积Pt 催化剂, 对所沉积Pt 催化电极性能及负载量用循环伏安法(CV)、X 射线衍射仪(XRD)、透射电镜(TEM)及分光光度法进行了表征. 结果表明, 通过调制电沉积过程的脉冲参数, 能够实现质子交换膜燃料电池(PEMFC)电极Pt催化剂的直接电化学沉积, 能够调控电沉积Pt粒径, 并能有效地缓解电沉积过程中析氢对沉积金属催化剂铂的干扰, 所沉积的Pt 催化剂利用率较传统Nafion 粘接Pt/C催化电极要高. 脉冲导通时间ton 为300 μs、断通时间toff 为1200 μs, 脉冲峰值电流密度jp 为100 mA·cm-2 时, 电沉积120 s制得的电极的Pt 晶粒约5-8 nm, Pt 表面利用率为43.14%, 沉积Pt的电流效率为45%.  相似文献   

5.
应用原子层沉积技术在碳材料复合电极基体上制备了低铂载量的高性能膜电极.将碳载体(XC-72R)与聚四氟乙烯乳液均匀混合后涂布在碳纸上,在马弗炉中350℃烧结,构成复合电极的基底.然后采用原子层沉积技术将铂活性组分沉积在电极基底上制得膜电极的阳极,将该阳极与经过预处理的质子交换膜及阴极压合即得膜电极.由扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)和循环伏安(CV)等分别表征该电极,单电池测试膜电极的性能.结果表明,活性组分在阳极中高度分散,膜电极具有良好的稳定性.膜电极的最大功率密度可达3.34 kW.(gPt)-1,是商业催化剂常规方式下制备的膜电极的1.76倍.以本文方法制得的膜电极具有铂载量低、单位质量铂的能量密度高等特点,有望在燃料电池领域应用.  相似文献   

6.
罗昪  周芬  潘牧 《高等学校化学学报》2022,43(4):20210853-86
层级多孔碳作为氧还原铂基催化剂载体的选择之一, 简单的旋转圆盘电极(RDE)验证此类催化剂具有较高的氧还原活性, 但几乎都缺少膜电极(MEA)性能验证, 实用性无法保证. 本文设计制备了基于聚苯胺的层级多孔碳(NHPC)载铂催化剂(Pt/NHPC850), 研究了其氧还原活性、 MEA质子传输和氧传输特性. RDE测试研究表明, Pt/NHPC850催化剂在低I/C(离聚物与碳载体质量比)时的面积活性低于实心碳载铂催化剂(Pt/XC-72), 但当I/C增大到与膜电极中一致时, 由于Nafion树脂对Pt催化剂的毒化作用增强, 其面积活性反而优于 Pt/XC-72. Pt/NHPC850催化剂的高Pt分散性及其优异的抗Nafion毒化性能, 使其在I/C为0.8时的质量活性为Pt/XC-72催化剂的1.34倍. MEA质子传输研究表明, 即使在高加湿条件下, Pt/NHPC850质子电阻率仍高达72.6 mΩ·cm2, 为Pt/XC-72的3倍. Pt/NHPC850制备的膜电极极化曲线在500 mA/cm2电流密度下性能迅速下降, Pt/NHPC850的氧增益电压达到144.4 mV, 比Pt/XC-72高56.7 mV. 表明Pt/NHPC850膜电极的质子传输和氧传输性能较差. 对比Pt/NHPC850催化剂的RDE和MEA的测试结果, 说明以层级多孔碳为载体的铂碳催化剂虽然耐Nafion毒化能力提高, 但是质子和氧气的氧传输性较差, 此类层级多孔碳还需进一步优化其结构, 才有可能满足低铂质子交换膜燃料电池(PEMFC)的应用需求.  相似文献   

7.
李恒  孔令斌  张晶  王儒涛  罗永春  康龙 《应用化学》2010,27(9):1065-1070
采用直接电化学还原法在介孔碳(CMK-3)载体上直接电沉积高分散的铂纳米颗粒,制备CMK-3复合铂纳米颗粒电极(Pt/CMK-3)。 通过透射电子显微镜分析发现,铂纳米颗粒非常均匀的分布在CMK-3上,平均粒径约5 nm。 通过循环伏安测试,分析了催化剂不同负载铂含量时氯铂酸的利用率,在理论铂质量分数为20%时,这种方法制备的Pt/CMK-3所使用的氯铂酸的利用率最高,在1 mol/L CH3OH+0.5 mol/L H2SO4溶液中循环伏安测试电流密度达到382 A/g。 在相同实验条件下,Pt/CMK-3电极对甲醇电催化活性远高于Pt/XC-72(炭黑)电极和用常规电沉积方法制备的Pt/CMK-3电极。  相似文献   

8.
本实验利用铜的欠电位沉积技术,在旋转圆盘电极上以碳负载的钯纳米颗粒为核,制备铂单原子层核壳结构催化剂. 电化学测试用于表征不同Nafion含量的添加对于核壳结构催化剂制备的影响. 实验证明,Nafion的存在会影响铜的欠电位沉积,铂与铜的置换反应,并决定最终制备的核壳结构催化剂的氧还原催化反应的活性. 当催化剂薄层中Nafion的含量低于5%的时候,添加Nafion不但可以帮助催化剂附着在旋转圆盘电极表面,而且可以保证制备的催化剂具有较好的氧还原反应催化活性. 在H2SO4溶液中,钯纳米颗粒的表面存在特殊的阴离子吸/脱附电化学信号峰,这些信号峰可以用来监测Nafion含量对于铂单原子层核壳结构催化剂制备的影响.  相似文献   

9.
聚合物电解质膜燃料电池薄电极制备技术的研究   总被引:4,自引:0,他引:4  
为降低聚合物电解质膜燃料电池 (PEMFC)电极中铂的载量 ,本文建立一种新的薄电极制备技术 (TEFT) ,制备了表面平滑、颗粒分布均匀的低铂载量电极 .结果表明当电极的铂载量为 1mg/cm2 ,用Nafion 117膜作电解质时 ,电池的最大功率密度达 0 30W·cm-2 .系统地考察了阴极中不同PTFE和Nafion含量对PEMFC性能的影响 .  相似文献   

10.
以石墨和液体石蜡油为主要原料,分别制备了掺杂不同量多壁碳纳米管(MWCNT)、石墨烯(GRA)、电容活性炭(YEC)和电池活性炭(YBC)的多种碳糊底电极Y-CPE(Y代表各种掺杂碳材料,CPE代表纯碳糊电极).采用恒电位法在-0.10 V(vs.Ag/Ag Cl)电位下将铂电沉积到这些电极上.结果表明,当电池碳的含量为14%时,Pt/YBC-CPE(14%)复合电极对甲醇具有最好的电催化氧化活性.采用恒电位方法在0.85 V(vs.Ag/Ag Cl)电位下将聚邻甲基苯胺(POT)电聚合沉积到纯碳糊电极CPE和含有电池碳的YBC-CPE(14%)电极上,得到复合电极POT/CPE和POT/YBC-CPE(14%),再通过恒电位方法将铂电沉积到这2个复合电极上.扫描电镜(SEM)观察结果表明,在Pt/CPE,Pt/YBC-CPE(14%),Pt/POT(6.5 mC)/CPE和Pt/POT(6.5 mC)/YBC-CPE(14%)4个复合电极中,在Pt/POT/YBC-CPE(14%)复合电极上的铂粒子的尺寸最小,并且Pt/POT(6.5 mC)/YBC-CPE(14%)复合电极电催化氧化甲醇活性最高.在POT(6.5 mC)/CPE和POT(6.5 mC)/YBC-CPE(14%)上Pt纳米颗粒的电沉积过程是一个近似的3D成核过程.研究还发现,复合电极Pt/POT/CPE和Pt/POT/YBC-CPE电催化氧化甲醇的活性随POT膜厚度的增加先增大后减少,存在一个最佳的膜厚度.  相似文献   

11.
三组Pt- Ru/C催化剂前驱体对其性能的影响   总被引:1,自引:0,他引:1  
分别以三组不同的Pt和Ru化合物为前驱体, 采用热还原法制备了Pt-Ru/C催化剂, 比较不同前驱体对催化剂性能的影响;通过XRD和TEM技术对催化剂的晶体结构及微观形貌进行了分析. 结果表明以H2PtCl6+RuCl3和自制(NH4)2PtCl6+Ru(OH)3为前驱体的催化剂Pt和Ru没有完全形成合金状态, 在Pt(111)和Pt(200)之间有Ru(101)存在;以Pt(NH3)2(NO2)2和自制含钌化合物为前驱体制备的催化剂未检测出Ru金属或其氧化物的衍射峰, Pt-Ru颗粒在载体上分散均匀, 粒径最小, 为3.7 nm. 利用玻碳电极测试了循环伏安、记时电流和阶跃电位曲线, 考核了上述催化剂对甲醇阳极催化氧化活性的影响;结果表明:以Pt(NH3)2(NO2)2和自制含钌化合物为前驱体制备的催化剂对甲醇的电催化氧化活性最高, 循环伏安曲线峰电流密度达11.5 mA•cm-2.  相似文献   

12.
采用脉冲微波辅助化学还原合成新型载体钴-聚吡咯-碳(Co-PPy-C)负载PtNi催化剂.利用透射电镜(TEM)和X射线衍射(XRD)研究了催化剂的结构和形貌,此外,利用循环伏安(CV)和线性扫描伏安(LSV)等方法测试了催化剂的电化学活性及耐久性. PtNi/Co-PPy-C催化剂的金属颗粒直径约为1.77 nm,催化剂在载体上分布均匀且粒径分布范围较窄. XRD结果显示, PtNi/Co-PPy-C中Pt(111)峰最强, Pt主要是面心立方晶格.CV结果显示,其电化学活性面积(ECSA)为72.5 m2·g-1,明显高于商用催化剂Pt/C(JM)的56.9 m2·g-1.为进一步考查催化剂耐久性,电化学加速5000圈耐久性测试后, PtNi/Co-PPy-C颗粒发生明显集聚, ECSA衰减率和0.9 V下比质量活性衰减率分别为38.2%和63.9%.此外,采用有效面积为50 cm2的单电池用于评价自制催化剂的性能,发现在70 ℃且背压为50 kPa时电池的性能最好,此时自制PtNi/Co-PPy-C催化剂制备膜电极(MEA)的最大功率密度达到523 mW·cm-2.可见自制催化剂的电化学性能高于商用Pt/C(JM),在质子交换膜燃料电池(PEMFC)领域有一定的应用前景.  相似文献   

13.
High Pt utilization PEMFC electrodes were prepared by an alternative ion-exchange/electrodeposition (AIEE) technique. The results demonstrated that the MEA employing an AIEE electrode with a Pt loading of 0.014 mg Pt cm(-2) exhibits performance approximately 2.2 times larger than that employing a conventional Nafion-bonded Pt/C electrode with a same Pt loading.  相似文献   

14.
以氯化锡为原料,四丙基溴化铵为表面活性剂水热法制备纳米二氧化锡(SnO2)催化剂,并以钛网为基材,制备催化电极. 应用SEM,XRD等手段对催化剂进行表征. 考察了反应物浓度、反应温度和反应时间对催化剂形貌的影响. 研究了纳米SnO2催化剂对锌还原硝基苯原电池反应的电催化性能. 结果表明,当 NaOH浓度为0. 5 mol•L-1、水热反应温度160 ℃、水热反应时间15 h时,得到的SnO2催化剂是由纳米片构成的刺球状颗粒,粒径最小,约17 nm. 与平板铂电极相比,制备的催化电极对硝基苯电还原具有更高的催化活性,硝基苯转化率为74%,最大放电功率为21.9 mW•cm-2,远大于平板铂电极. 硝基苯的主要还原产物为苯胺、对乙氧基苯胺和对氯苯胺.  相似文献   

15.
Three-dimensionally (3D) ordered mesoporous carbon sphere arrays (OMCS) are explored to support high loading (60 wt%) Pt nanoparticles as electrocatalysts for the methanol oxidation reaction (MOR). The OMCS has a unique hierarchical nanostructure with ordered large mesopores and macropores that can facilitate high dispersion of the Pt nanoparticles and fast mass transport during the reactions. The prepared Pt/OMCS exhibits uniformly dispersed Pt nanoparticles with an average size of 2.0 nm on the mesoporous walls of the carbon spheres. The Pt/OMCS catalyst shows significantly enhanced specific electrochemically active surface area (ECSA) (73.5 m2 g-1) and electrocatalytic activity (0.69 mA cm-2) for the MOR compared with the commercial 60 wt% Pt/C catalyst.  相似文献   

16.
利用掺杂氮介孔材料(NDMPC)和羧甲基壳聚糖(CMCH)机械共混的纳米复合物作为固酶载体,以滴涂-干燥法分别制备了固定漆酶(Lac)阴极和固定葡萄糖氧化酶阳极,组装了有Nafion离子交换膜的葡萄糖/O2酶燃料电池.固定漆酶电极作为燃料电池阴极和氧电化学传感器的性能以结合旋转圆盘电极技术的循环伏安法、线性扫描伏安(LSV)法以及计时电流法进行表征,同时使用紫外-可见分光光度法和石墨炉原子吸收光谱法研究酶分子在电极表面的构型和估算电极表面载体对酶的担载量.测试结果表明:固酶阴极在无电子中介体时可以实现漆酶活性中心T1与导电基体之间的直接电子迁移(表观电子迁移速率为0.013 s-1),而且具有较小的氧还原超电势(150 mV).通过进一步定量比较分子内电子传递速率(1000 s-1)、底物转化速率(0.023 s-1)以及前述酶-导电基体间电子迁移速率,可以发现此电极催化氧还原循环受制于酶-电极之间的电子迁移过程;这种电极对氧的传感性能良好:低检测限(0.04 μmol·dm-3)、高灵敏度(12.1 μA·μmol-1·dm3)和良好的对氧亲和力(KM = 8.2 μmol·dm-3),这种固酶阴极还具有良好的重现性、长期使用性、热稳定性和pH耐受性.组装的生物燃料电池的开路电压为0.38 V,最大能量输出密度为19.2 μW·cm-2,最佳工作条件下使用3周后输出功率密度仍可保持初始值的60%以上.  相似文献   

17.
王健  轩文辉  何倩  蒋金霞  周圆圆  聂瑶  廖强  邵敏华  丁炜  魏子栋 《电化学》2023,29(1):2215003-55
质子交换膜燃料电池(PEMFC)是一种强耦合、复杂非线性、动态的、多输入多输出的能量转换装置,不容易达到或保持理想的工作状态。在动态的PEMFC的工作状态下,其输出的电流和电压是振动的、不稳定的,会对负载的使用和寿命造成很大的影响,严重时亦可损坏负载。该波动的电流或电压输出不仅直接决定着发电系统的成本,而且影响着有效的能量转换效率及电子原件和设备的寿命。基于此,本工作针对燃料电池动态特性及动态排水空间受限导致其电流不规则波动,进而影响输出电能品质和燃料电池系统及其他电子元件的寿命和维护成本等问题,开发了一种外延生长的方法制备排水空间可调控的抗溺水电极,通过调控载体的成核位点密度,形成一种具有不同排水空间的类超晶体结构微米级铂基催化剂。该催化剂制备的电极不仅表现出极佳的抗溺水性,在极低的电流振幅(25 mA·cm-2)下持续稳定的输出高品质电能,同时提高了铂的利用率,使其组成的MEA比功率密度达到11.69 W·mgPt-1,表现出极高的应用潜力。  相似文献   

18.
过渡金属氮掺杂碳基催化剂已成为替代铂基氧还原反应(ORR)电催化剂的理想选择。本文通过静电纺丝技术制备了高比表面、高度分散的钴原子配位氮掺杂的碳纳米纤维催化剂(Co-N/C)。X射线衍射(XRD)和高分辨率透射电镜(HRTEM)结果证实Co元素高度分散于制备的Co-N/C催化剂中。X射线光电子能谱结果表明N元素主要以吡啶N和石墨N形式存在。该Co-N/C催化剂对ORR反应呈现出较高的电催化活性,其氧还原起始和半波电位分别为0.92 V和0.80 V(相对于标准氢电极),接近于商业化Pt/C催化剂的性能。以制备的Co-N/C催化剂作为阴极,25℃下锌空气燃料电池的开路电位1.54 V、最大功率密度达到了190 m V·cm~(-2)表明该催化剂具有良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号