首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
郑雅梅  胡长生  杨贞标  吴怀志 《中国物理 B》2016,25(10):104202-104202
We investigate the effect of the dipole–dipole interaction(DDI) on the photon statistics with two atoms trapped in an optical cavity driven by a laser field and subjected to cooperative emission. By means of the quantum trajectory analysis and the second-order correlation functions, we show that the photon statistics of the cavity transmission can be flexibly modulated by the DDI while the incoming coherent laser selectively excites the atom–cavity system's nonlinear Jaynes–Cummings ladder of excited states. Finally, we find that the effect of the cooperatively atomic emission can also be revealed by the numerical simulations and can be explained with a simplified picture. The DDI induced nonlinearity gives rise to highly nonclassical photon emission from the cavity that is significant for quantum information processing and quantum communication.  相似文献   

2.
We theoretically investigate the entanglement properties in a hybrid system consisting of an optical cavity–array coupled to a mechanical resonator. We show that the steady state of the system presents bipartite continuous variable entanglement in an experimentally accessible parameter regime. The effects of the cavity–cavity coupling strength on the bipartite entanglements in the field–mirror subsystem and in the field–field subsystem are studied. We further find that the entanglement between the adjacent cavity and the movable mirror can be entirely transferred to the distant cavity and mirror by properly choosing the cavity detunings and the coupling strength in the two-cavity case. Surprisingly, such a remote macroscopic entanglement tends to be stable in the large coupling regime and persists for environment temperatures at above 25 K in the three-cavity case. Such optomechanical systems can be used for the realization of continuous variable quantum information interfaces and networks.  相似文献   

3.
We investigate nonlinear Dicke quantum phase transition(QPT) induced by inter-atomic nonlinear interaction and its quantum witness in a cavity-Bose–Einstein-condensate(BEC) system. It is shown that inter-atomic nonlinear interaction in a cavity BEC system can induce first-order Dicke QPT. It is found that this nonlinear Dicke QPT can happen in an arbitrary coupling regime of the cavity and atoms. It is demonstrated that the quantum speed limit time can witness the Dicke QPT through its sudden change at the critical point of the QPT.  相似文献   

4.
Recently, cavity optomechanics has become a rapidly developing research field exploring the coupling between the optical field and mechanical oscillation. Cavity optomechanical systems were predicted to exhibit rich and nontrivial effects due to the nonlinear optomechanical interaction. However, most progress during the past years have focused on the linearization of the optomechanical interaction, which ignored the intrinsic nonlinear nature of the optomechanical coupling. Exploring nonlinear optomechanical interaction is of growing interest in both classical and quantum mechanisms, and nonlinear optomechanical interaction has emerged as an important new frontier in cavity optomechanics. It enables many applications ranging from single-photon sources to generation of nonclassical states. Here, we give a brief review of these developments and discuss some of the current challenges in this field.  相似文献   

5.
靳丽娟  方卯发 《中国物理》2006,15(9):2012-2017
We investigate the entanglement in a system of two coupling atoms interacting with a single-mode field by means of quantum information entropy theory. The quantum entanglement between the two atoms and the coherent field is discussed by using the quantum reduced entropy, and the entanglement between the two coupling atoms is also investigated by using the quantum relative entropy. In addition, the influences of the atomic dipole--dipole interaction intensity and the average photon number of the coherent field on the degree of the entanglement is examined. The results show that the evolution of the degree of entanglement between the two atoms and the field is just opposite to that of the degree of entanglement between the two atoms. And the properties of the quantum entanglement in the system rely on the atomic dipole--dipole interaction and the average photon number of the coherent field.  相似文献   

6.
An alternative scheme is proposed for the generation of n-qubit W states of superconducting quantum interference devices (SQUID) in cavity QED. In this scheme, Raman coupling of two lower flux states of SQUID system is achieved via a microwave pulse and the cavity mode. Conditioned on no photon leakage from the cavity, the n-qubit W state can be generated whether the effective coupling parameters of the SQUID to cavity mode and classical microwave fields are the same or different. Our strictly numerical simulations of the time evolution of the system including decay show that the success probability of our scheme is almost unity and the interaction time is on the order of 10-9 s. The scheme can also be used to generate the Schrodinger cat states of multi-SQUID.  相似文献   

7.
The spontaneous emission spectrum from two quantum dots (QDs) that are strongly coupled with a single-mode nanocavity is investigated using rigorous numerical calculations and simple analytical solutions of quantum dynamics. The emission spectra both from the side and along the axis of the cavity are considered. Modification of two parameters, the coupling strength and the detuning between the transition frequencies of the two quantum dots, allows us to efficiently control the shape of the spontaneous emission spectrum. Different profiles and their physical origins can be well understood in the dressed-state picture for the light-QD interaction in the on-resonance and off-resonance situations. In the on-resonance situation, the emission spectra exhibit symmetric features, and they are not altered by the asymmetry in the coupling pa- rameters. The axis spectra show two emission peaks while the side spectra have three emission peaks. In the off-resonance situation, the emission spectra always show an asymmetrical three-peak feature. When the two QDs have different decay parameters, singular features (a peak or a dip) can take place at the frequency of the cavity mode, and this is attributed to the unbalanced process of the emission and absorption of a single photon.  相似文献   

8.
We propose a scheme to implement quantum state transfer between two distant quantum nodes via a hybrid solid–optomechanical interface. The quantum state is encoded on the native superconducting qubit, and transferred to the microwave photon, then the optical photon successively, which afterwards is transmitted to the remote node by cavity leaking,and finally the quantum state is transferred to the remote superconducting qubit. The high efficiency of the state transfer is achieved by controllable Gaussian pulses sequence and numerically demonstrated with theoretically feasible parameters.Our scheme has the potential to implement unified quantum computing–communication–computing, and high fidelity of the microwave–optics–microwave transfer process of the quantum state.  相似文献   

9.
We demonstrate the controllable generation of multi-photon Fock states in circuit quantum electrodynamics (circuit QED). The external bias flux regulated by a counter can effectively adjust the bias time on each superconducting flux qubit so that each flux qubit can pass in turn through the circuit cavity and thereby avoid the effect of decoherence. We further investigate the quantum correlation dynamics of coupling superconducting qubits in a Fock state. The results reveal that the lower the photon number of the light field in the number state, the stronger the interaction between qubits is, then the more beneficial to maintaining entanglement between qubits it will be.  相似文献   

10.
Quantum manipulation of macroscopic mechanical systems is of great interest in both fundamental physics and ap- plications ranging from high-precision metrology to quantum information processing. For these purposes, a crucial step is to cool the mechanical system to its quantum ground state. In this review, we focus on the cavity optomechanical cooling, which exploits the cavity enhanced interaction between optical field and mechanical motion to reduce the thermal noise. Recent remarkable theoretical and experimental efforts in this field have taken a major step forward in preparing the mo- tional quantum ground state of mesoscopic mechanical systems. This review first describes the quantum theory of cavity optomechanical cooling, including quantum noise approach and covariance approach; then, the up-to-date experimental progresses are introduced. Finally, new cooling approaches are discussed along the directions of cooling in the strong coupling regime and cooling beyond the resolved sideband limit.  相似文献   

11.
By using the non-Markovian master equation, we investigate the effect of the cavity and the environment on the quantum Fisher information(QFI) of an atom qubit system in a dissipation cavity. We obtain the formulae of QFI for two different initial states and analyze the effect of the atom–cavity coupling and the cavity–reservoir coupling on the QFI.The results show that the dynamic behavior of the QFI is obviously dependent on the initial atomic states, the atom–cavity coupling, and the cavity–reservoir coupling. The stronger the atom–cavity coupling, the quicker the QFI oscillates, and the slower the QFI decreases. In particular, the QFI will tend to be a stable value rather than zero if the atom–cavity coupling is large enough. On the other hand, the smaller the cavity–reservoir coupling, the stronger the non-Markovian effect, and the slower the QFI decays. In other words, choosing the best parameter can improve the accuracy of the parameter estimation.In addition, the physical explanation of the dynamic behavior of the QFI is given by means of the QFI flow.  相似文献   

12.
We propose schemes to realize quantum state transfer and prepare quantum entanglement in coupled cavity and cavity–fiber–cavity systems, respectively, by using the dressed state method. We first give the expression of pulses shape by using dressed states and then find a group of Gaussian pulses that are easy to realize in experiment to replace the ideal pulses by curve fitting. We also study the influence of some parameters fluctuation, atomic spontaneous emission, and photon leakage on fidelity. The results show that our schemes have good robustness. Because the atoms are trapped in different cavities, it is easy to perform different operations on different atoms. The proposed schemes have the potential applications in dressed states for distributed quantum information processing tasks.  相似文献   

13.
It remains a great challenge to realize direct manipulation of a nitrogen-vacancy(NV) spin at the single-quantum level with a microwave(MW) cavity. As an alternative, a hybrid system with the spin–phonon–photon triple interactions mediated by a squeezed cantilever-type harmonic resonator is proposed. According to the general mechanical parametric amplification of this in-between phonon mode, the direct spin–phonon and photon–phonon couplings are both exponentially enhanced, which can even further improve the coherent manipulation of a single NV spin and MW photon with a higher efficiency. In view of this triple system with enhanced couplings and the additional sideband adjustable designs, this scheme may provide a more efficient phonon-mediated platform to bridge or manipulate the MW quantum and a single electron spin coherently. It is also hoped to evoke wider applications in the areas of quantum state transfer and preparation,ultrasensitive detection and quantum nondestructive measurement, etc.  相似文献   

14.
Negativity has been adopted to investigate the entanglement in a system composed of a two-level atom and a two-mode cavity field. Effects of Kerr-like medium and the number of photon inside the cavity on the entanglement are studied. Our results show that atomic initial state must be superposed, so that the two cavity field modes can be entangled. Moreover, we also conclude that the number of photon in the two cavity mode should be equal. The interaction between modes, namely, the Kerr effect, has a significant negative contribution. Note that the atom frequency and the cavity frequency have an indistinguishable effect, so a corresponding approximation has been made in this article. These results may be useful for quantum information in optics systems.  相似文献   

15.
The coupling interaction between an individual optical emitter and the propagating surface plasmon polaritons in a graphene microribbon (GMR) waveguide is investigated by numerical calculations, where the emitter is situated above the GMR or in the same plane of the GMR, The results reveal a multimode coupling mechanism for the strong interaction between the emitter and the propagating plasmonic waves in graphene. When the emitter is situated in the same plane of the GMR, the decay rate from the emitter to the surface plasmon polaritons increases more than 10 times compared with that in the case with the emitter above the GMR.  相似文献   

16.
Motivated by the growing interest in the novel quantum phases in materials with strong electron correlations and spin–orbit coupling, we study the interplay among the spin–orbit coupling, Kondo interaction, and magnetic frustration of a Kondo lattice model on a two-dimensional honeycomb lattice.We calculate the renormalized electronic structure and correlation functions at the saddle point based on a fermionic representation of the spin operators.We find a global phase diagram of the model at half-filling, which contains a variety of phases due to the competing interactions.In addition to a Kondo insulator, there is a topological insulator with valence bond solid correlations in the spin sector, and two antiferromagnetic phases.Due to the competition between the spin–orbit coupling and Kondo interaction, the direction of the magnetic moments in the antiferromagnetic phases can be either within or perpendicular to the lattice plane.The latter antiferromagnetic state is topologically nontrivial for moderate and strong spin–orbit couplings.  相似文献   

17.
We analyze the transport property of a single photon in a one-dimensional coupled resonator waveguide coupled with a Λ-type emitter assisted by an additional cavity. The reflection and transmission coefficients of the inserted photon are obtained by the stationary theory. It is shown that the polarization state of the inserted photon can be converted with high efficiency. This study may inspire single-photon devices for scalable quantum memory.  相似文献   

18.
吴春旺  韩阳  邓志姣  梁林梅  李承祖 《中国物理 B》2010,19(1):10313-010313
A simple scheme is proposed to generate the W state of N Λ-type neutral atoms trapped in an optical cavity via Raman transition. Conditional on no photon leakage from the cavity, the N-qubit W state can be prepared perfectly by turning on a classical coupling field for an appropriate time. Compared with the previous ones, our scheme requires neither individual laser addressing of the atoms, nor demand for controlling N atoms to go through an optical cavity simultaneously with a constant velocity. We investigate the influence of cavity decay using the quantum jump approach and show that the preparation time decreases and the success probability increases with atom number because of a collective enhancement of the coupling.  相似文献   

19.
Polarization, an intrinsic ingredient of photon, plays a critical role in its interaction with matter. A general polarization state can be an appropriate superposition of two basic polarization states, say, the vertical and horizontal linear polarized state. Here we study spontaneous emission of a V-type three-level atom(with two upper states close in energy level)strongly coupled with a single-mode damped optical cavity. By defining a general polarization state of atom as a specific superposition of the two upper quantum states, we can prepare atoms with linear polarization at arbitrary direction, left and right circular polarization, and left and right elliptical polarization, similar to photons. We find that the spontaneous emission of light from these "polarized" three-level atoms shows very different profiles of side and axis spectra. This means that the polarization state of three-level atoms can become an active ingredient to manipulate its interaction with light and control the quantum interference effect. Exploitation of the coherent superposition and interference of quantum states in"polarized" atoms would allow one to deeply explore new frontiers of light–matter interaction.  相似文献   

20.
Polarization dependence of the coupling of excitation light to surface plasmon polaritons(SPPs) was investigated in a Ag nanoparticle–nanowire waveguide system(a Ag nanoparticle attached to a Ag nanowire). It was found that under the illumination of excitation light on the nanoparticle–nanowire junction, the coupling efficiency of light to SPPs depends on the polarization of the excitation light. Theoretical simulations revealed that it is the local near-field coupling between the nanoparticle and the nanowire that enhances the incident light to excite the nanowire SPPs. Because the shapes of the Ag nanoparticles differ, the local field intensity, and thus the excitement of the nanowire SPPs, vary with the polarization of the excitation light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号