首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double-barrier highly asymmetric Nb–Al oxide–Al–Nb oxide–Nb structures with reproducible characteristics were fabricated. The heterocontacts with the middle Al layer thickness ranging from 4 to 6 nm exhibited a well-defined d.c. Josephson supercurrent Ic at 4.2 K and characteristic voltages Vc=IcRN (RN is the normal resistance, Vc defines the response time of the junction) from 0.3 to 0.4 mV. Two prominent features in the quasiparticle current–voltage curves have been observed: a so-called ‘knee' in the energy-gap region and an additional (to the linear voltage dependence) current at higher biases. They are discussed within a simple Landauer–Büttiker scattering approach to the phase-coherent quasiparticle transport in a quasiballistic S–I1–N–I2–S heterostructure with an extremely great difference between the barrier transparencies.  相似文献   

2.
A heterodyne receiver using an SIS waveguide mixer with two mechanical tuners has been characterized from 480 GHz to 650 GHz. The mixer uses either a single 0.5 × 0.5 µm2 Nb/AlOx/Nb SIS tunnel junction or a series array of two 1 µm2 Nb tunnel junctions. These junctions have a high current density, in the range 8 – 13 kA/cm2. Superconductive RF circuits are employed to tune the junction capacitance. DSB receiver noise temperatures as low as 200 ± 17 K at 540 GHz, 271 K ± 22 K at 572 GHz and 362 ± 33 K at 626 GHz have been obtained with the single SIS junctions. The series arrays gave DSB receiver noise temperatures as low as 328 ± 26 K at 490 GHz and 336 ± 25 K at 545 GHz. A comparison of the performances of series arrays and single junctions is presented. In addition, negative differential resistance has been observed in the DC I–V curve near 490, 545 and 570 GHz. Correlations between the frequencies for minimum noise temperature, negative differential resistance, and tuning circuit resonances are found. A detailed model to calculate the properties of the tuning circuits is discussed, and the junction capacitance as well as the London penetration depth of niobium are determined by fitting the model to the measured circuit resonances.  相似文献   

3.
Nb/Al-AlOx/Nb tunnel junctions are often used in the studies of macroscopic quantum phenomena and superconducting qubit applications of the Josephson devices. In this work, we describe a convenient and reliable process using electron beam lithography for the fabrication of high-quality, submicron-sized Nb/Al-AlOx/Nb Josephson junctions. The technique follows the well-known selective Nb etching process and produces high-quality junctions with Vm=100 mV at 2.3 K for the typical critical current density of 2.2 kA/cm^2, which can be adjusted by controlling the oxygen pressure and oxidation time during the formation of the tunnelling barrier. We present the results of the temperature dependence of the sub-gap current and in-plane magnetic-field dependence of the critical current, and compare them with the theoretical predictions.  相似文献   

4.
Nb/Al-AlOx/Nb tunnel junctions with controllable critical current density Jc are fabricated using the standard selective Nb etching process.Tunnel barriers are formed in different oxygen exposure conditions (oxygen pressure P and oxidation time t),giving rise to Jc ranging from 100 A/cm2 to above 2000 A/cm2.Jc shows a familiar linear dependence on P × t in logarithmic scales.We calculate the energy levels of the phaseand flux-type qubits using the achievable junction parameters and show that the fabricated Nb/Al-AlOx/Nb tunnel junctions can be used conveniently for quantum computation applications in the future.  相似文献   

5.
A 110 GHz superconductor insulator superconductor (SIS) tunnel junction receiver has been developed and used in regular astronomical observations on the 4m radio telescope at the Department of Astrophysics, Nagoya University. The SIS junction consists of a sandwich structure of Nb/AlOx/Nb, and is cooled to 4.2K with a closed cycle He-gas refrigerator. The receiver exhibits a best double side band noise temperature of 23±2 K at 110GHz. Additional measurements at 98–115 GHz indicate that the receiver has a good response over this input frequency range.  相似文献   

6.
We describe heterodyne mixing experiments with NbCN/Nb quasi-particle tunnel junctions at submillimeter wavelengths. In this wavelength range junctions with niobium nitride as superconducting material are promising because of the high gap voltage, about 5.7 mV, as compared to 3 mV for the more commonly used niobium. As a first step towards all-NbN junctions we investigate the development of junctions with a NbN base electrode and a Nb upper electrode. We present results from samples with two different insulating barriers: aluminum oxide and magnesium oxide. Measured noise temperatures range from 500 K at 345 GHz and 1600 K at 482 GHz to 8500 K at 644 GHz. These results are about one order of magnitude worse than the best results obtained with all-Nb junctions. The difference can be attributed partly to the relatively high radio-frequency (rf) losses in NbN films as compared to Nb. Also sensitivity is reduced because of the relatively high leakage current in the sub-gap region of the I-V curve of the junction.  相似文献   

7.
本文报道了在射频磁控溅射装置上Nb/Al-AlOx/Nb隧道结的制备工艺和所获得的结果。对SIS三层结构形成时基片的温度、势垒,以及电极形成方法等问题进行了讨论。 关键词:  相似文献   

8.
We report results on two full height waveguide receivers that cover the 200–290 GHz and 380–510 GHz atmospheric windows. The receivers are part of the facility instrumentation at the Caltech Submillimeter Observatory on Mauna Kea in Hawaii. We have measured receiver noise temperatures in the range of 20K–35K DSB in the 200–290 GHz band, and 65–90K DSB in the 390–510 GHz atmospheric band. In both instances low mixer noise temperatures and very high quantum efficiency have been achieved. Conversion gain (3 dB) is possible with the 230 GHz receiver, however lowest noise and most stable operation is achieved with unity conversion gain.A 40% operating bandwidth is achieved by using a RF compensated junction mounted in a two-tuner full height waveguide mixer block. The tuned Nb/AlO x /Nb tunnel junctions incorporate an end-loaded tuning stub with two quarter-wave transformer sections to tune out the large junction capacitance. Both 230 and 492 GHz SIS junctions are 0.49µm2 in size and have current densities of 8 and 10 kA/cm2 respectively.Fourier Transform Spectrometer (FTS) measurements of the 230 and 492 GHz tuned junctions show good agreement with the measured heterodyne waveguide response.  相似文献   

9.
The transparency of the tunnel barriers in double-barrier junctions influences the critical current density and the form of the current–voltage characteristics (IVC). Moreover, the barrier asymmetry is an important parameter, which has to be controlled in the technological process. We have performed a systematic study of the influence of the barrier transparency on critical current, IC, and normal resistance, RN, by preparing SIS and SINIS junctions under identical technological conditions and comparing their transport properties. We have fabricated Nb/Al2O3/Nb and Nb/Al2O3/Al/Al2O3/Nb devices with different current densities using a conventional fabrication process, varying pressure and oxidation time. The thickness of the Al middle electrode in all Nb/Al2O3/Al/Al2O3/Nb junctions was 6 nm. Patterning of the multilayers was done using conventional photolithography and the selective niobium etching process. The current density of SIS junctions was changed in the range from 0.5 to 10 kA/cm2. At the same conditions the current density of SINIS devices revealed 1–100 A/cm2 with non-hysteretic IVC and characteristic voltages, ICRN, of up to 200 μV. By comparing the experimental and theoretical temperature dependence of the ICRN product we estimated the barrier transparency and its asymmetry. The comparison shows a good agreement of experimental data with the theoretical model of tunneling through double-barrier structures in the dirty limit and provides the effective barrier transparency parameter γeff≈300. A theoretical framework is developed to study the influence of the barrier asymmetry on the current–phase relationship and it is proposed to determine the asymmetry parameter by measuring the critical current suppression as function of applied microwave power. The theoretical approach to determine the non-stationary properties of double-barrier junctions in the adiabatic regime is formulated and the results of calculations of the IV characteristics are given in relevant limits. The existence and the magnitude of a current deficit are predicted as function of the barrier asymmetry.  相似文献   

10.
High resistance normal Nb/Pb tunnel junctions have been studied. Both at 300 K and 77 K an hysteresis in the IV characteristic has been measured: the presence of negative or positive bias voltages changes the tunneling probability. At every fixed bias current value, a voltage drift with time appears. The drift velocity increases as the voltage or the temperature increases. Moreover at 77 K anomalous low frequency oscillations arise in the junction when some positive or negative threshold voltages are exceeded.  相似文献   

11.
A heterodyne receiver based on a 1/3 reduced height rectangular waveguide SIS mixer with two mechanical tuners has been built for astronomical observations of molecular transitions in the 230 GHz frequency band. The mixer used an untuned array (RnCj3, Rn70 ) of four Nb/AIOx/Nb tunnel junctions in series as a nonlinear mixing element. A reasonable balance between the input and output coupling efficiencies has been obtained by choosing the junction number N=4. The receiver exhibits DSB (Double Side Band) noise temperature around 50 K over a frequency range of more than 10 GHz centered at 230 GHz. The lowest system noise temperature of 38 K has been recorded at 232.5 GHz. Mainly by adjusting the subwaveguide backshort, the SSB (Single Side Band) operation with image rejection of 15 dB is obtained with the noise temperature as low as 50 K. In addition, the noise contribution from each receiver component has been studied further. The minimum SIS mixer noise temperature is estimated as 15 K, pretty close to the quantum limit v/k11 K at 230 GHz. It is believed that the receiver noise temperatures presented are the lowest yet reported for a 230 GHz receiver using untuned junctions.  相似文献   

12.
Owing to a very sharp nonlinearity in the quasiparticle currentvoltage characteristic, which fortuitously occurs on the scale of a few millivolts rather than a few volts as with semiconductor devices, superconductor/insulator/superconductor (SIS) tunnel junctions are the most sensitive detectors for heterodyne mixing at millimeter and submillimeter wavelengths. They can also provide sources of coherent local oscillator power at very high frequencies; more broadly, they have a number of interesting applications as fast, low-power logic elements and as detectors at optical wavelengths. For submillimeterwave mixers, in many ways the most demanding of these applications, the Nb/Al-oxide/Nb material system has emerged as the system of choice to frequencies of ∼ 700 GHz and beyond. Production of SIS devices requires careful attention to a number of critical microfabrication issues, and I describe here some of the insights gained from developing a process for high-quality niobium trilayers that successfully yielded small-area junctions with unusually low sub-gap leakage current.  相似文献   

13.
We report recent results on a 565–690 GHz SIS heterodyne receiver employing a 0.36µm2 Nb/AlO x /Nb SIS tunnel junction with high quality circular non-contacting backshort and E-plane tuners in a full height waveguide mount. No resonant tuning structures have been incorporated in the junction design at this time, even though such structures are expected to help the performance of the receiver. The receiver operates to at least the gap frequency of Niobium, 680 GHz. Typical receiver noise temperatures from 565–690 GHz range from 160K to 230K with a best value of 185K DSB at 648 GHz. With the mixer cooled from 4.3K to 2K the measured receiver noise temperatures decreased by approximately 15%, giving roughly 180K DSB from 660 to 680 GHz. The receiver has a full 1 GHz IF passband and has been successfully installed at the Caltech Submillimeter Observatory in Hawaii.  相似文献   

14.
采用计算机程控的压控电压源阳极氧化模式研究制备出自对准Nb/Al-AlOx/Nb隧道结的绝缘层Nb2O5/Al2O3/Nb2O5。研究了氧化电压、氧化层的厚度和氧化时间的关系。当阳极氧化电压变化率低于8V/min时,阳极氧化层的厚度基本取决于氧化电压的大小,而与氧化电压变化率无关。我们已采用电压源阳极氧化技术成功制备出超导Nb/Al-AlOx/Nb隧道结。  相似文献   

15.
We report characteristics of CeCoIn5/Al/AlOx/Nb and CeCoIn5/Al/AlOx/Al tunnel junctions fabricated on the (0 0 1) surface of CeCoIn5 crystal platelets. The main result of this work is the observation of a low Josephson current (as compared with that expected from the Ambegaokar–Baratoff formula), which is consistent with idea that the order parameter in the heavy-fermion superconductor CeCoIn5 has unconventional pairing symmetry.  相似文献   

16.
Modified geometry (MG) devices, Nb/Al/Nb/Al−AlOx−Al−AlOx−Al/Nb/Al/Nb, have been fabricated and investigated in comparison with the basic geometry (BG) double-barrier Nb/Al−AlOx−Al−AlOx−Al/Nb devices. The enhancement of the critical temperature in the Al film is found to be weaker for the MG devices as compared with the BG devices at temperatures nearT=4.2 K but stronger at lowT. Indication of an enhancement of dc Josephson critical current density,j c , at bias voltageV≠0 as compared withj c (V=0) has been observed in the MG devices for the first time.  相似文献   

17.
The impact of the quantum mechanical tunneling effect on the operation of MESFET device structure has been investigated. Due to the presence of a Schottky barrier in a highly doped semiconductor, the depletion region is so narrow that electrons can tunnel through the barrier and contribute to the gate leakage current. This, in turn, facilitates current gain of the Schottky junction transistor (SJT) in the subthreshold region. In a simulation of a SJT we have used 2D Monte Carlo particle-based simulations. Quantum mechanical tunneling effects have been accounted for by using the Airy function transfer matrix approach, valid for piecewise linear potential barriers.  相似文献   

18.
A topology of thin-film SQUID sensors that are based on Nb/AlOx/Nb tunnel junctions has been developed and optimized for nondestructive testing of materials and for other systems with a magnetic field sensitivity of <10 fT/Hz1/2.  相似文献   

19.
Single-layer washer-type high-Tc YBa2Cu3O7−x rf SQUIDs with grain-boundary Josephson junctions, as well as low-Tc Nb rf SQUIDs with Nb–Al2O3–Nb tunnel junctions, have been investigated in finite magnetic fields. It was shown experimentally that the suppression of the critical current of the Josephson junction due to the magnetic field leads to a modulation of the amplitude of the SQUID output signal. The role of the “unwanted” junction in high-Tc rf SQUIDs, which is formed by the grain boundary running through the washer of the SQUIDs on bicrystal substrates, has also been clarified. The drop of the SQUID signal at a finite magnetic field is originated by the penetration of the magnetic field into the unwanted junction. Based on these results, a direct radio-frequency method for the determination of the first critical field Hc1 for long Josephson junctions has been developed.  相似文献   

20.
A waveguide SIS heterodyne receiver using a Nb/AlOX/Nb junction has been built for astronomical observations of molecular transitions in the frequency range 600 GHz - 635 GHz, and has been successfully used at the Caltech Submillimeter Observatory (CSO). We report double sideband (DSB) receiver noise temperatures as low as 245 K at 600 GHz -610 GHz, and near 300 K over the rest of the bandwidth. These results confirm that SIS quasiparticle mixers work well at submillimeter-wave frequencies corresponding to photon energies of at least 90% of the superconductor energy gap. In addition, we have systematically investigated the effect on the receiver performance of the overlap between first-order and second-order photon steps of opposite sign at these frequencies. The receiver noise increases by as much as 40% in the region of overlap. We infer potential limitations for operating submillimeter-wave Nb/AlOx/Nb mixers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号