首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
The results of a study of time-resolved photoluminescence (PL) and energy transfer in both pure and doped with Ce3+ ions SrAlF5 (SAF) single crystals are presented. The time-resolved and steady-state PL spectra in the energy range of 1.5–6.0 eV, the PL excitation spectra and the reflectivity in the energy range of 3.7–21 eV, as well as the PL decay kinetics were measured at 8.8 and 295 K. The lattice defects were revealed in the low temperature PL spectra (emission bands at 2.9 and 4.5 eV) in the undoped SAF crystals. The luminescence spectra of the doped Ce3+:SAF crystals demonstrate a new selective emission bands in the range of 3.7–4.5 eV with the exponential decay kinetics (τ ≈ 60 ns at X-ray excitation). These bands correspond to the d-f transitions in Ce3+ ions, which occupy nonequivalent sites in the crystal lattice.  相似文献   

2.
Cathodoluminescence (CL) spectra for the Si nanocrystallites embedded in a matrix of silicon oxide films are measured at room temperature. The CL spectra consist of two principal bands whose peak energies are in a near-infrared (NIR) region (<1.6 eV) and in a blue region (2.6 eV), respectively. The spectral feature of the NIR CL band is similar to the corresponding PL spectra. The strong correlation between the presence of Si nanocrystallites and the formation of the NIR CL band are found as well as the PL spectrum. The peak energy of the blue CL band is slightly lower than that of the luminescence band originating from oxygen vacancies (≡Si–Si≡) in SiO2. Therefore, the blue CL band is considered to come from Sin clusters with n3 in the oxide matrix. Under irradiation of electron beams, degradation of the intensity is observed for both the CL bands but the decay characteristics are different.  相似文献   

3.
本文研究了低温淀积(例如T:<150℃)的GD a-Si:H在77K的时间分辨光致发光谱和荧光衰退。光致发光谱显示非对称形,荧光衰退显示出最初的快衰退,较长时间后为慢衰退。在快衰退范围内可用两个时间常数逐点分析时间分辨光谱,把主发光带分解为两个近似高斯形的发光带,对于Ts=127℃的薄膜,两发光带峰值位置在t=0时分别为1.73和1.58eV。快衰退两带的时间常数分别为10和23ns。文中还初步讨论了这两个发光带的起因。  相似文献   

4.
For the first time, subnanosecond time resolution is attained in the low-temperature (at 7 K) measurements of the photoluminescence (PL) spectra (2–6 eV), the PL excitation spectra (4–32 eV), the PL kinetics, and the reflection spectra (4–21 eV) of undoped potassium pentaborate KB5O8·4H2O (KB5) crystals under selective photoexcitation by synchrotron radiation. The PL peaks associated with the intrinsic defects of the KB5 lattice are detected. The PL bands resulting from radiative annihilation of the localized and self-localized electron excitations are singled out; these excitations are most efficiently photogenerated at the fundamental absorption edge in the region where the free exciton formation is expected. The difference between the PL spectra of the fast and slow components is revealed. An effective low-temperature energy transport over the KB5 hydrogen sublattice is deduced from a drop in efficiency of PL excitation in the interband-transition region as a result of nonradiative energy loss. Long-term vacuum UV irradiation of a KB5 crystal at 7 K gives rise to defects in the hydrogen sublattice, which facilitate localization of the electron excitations and reduce the effective length of their diffusion. This leads to a decrease in the nonradiative energy loss, thus enhancing the efficiency of the PL photoexcitation in the band-to-band transition region.  相似文献   

5.
Effects of vacuum and ambient thermal annealing and ageing on the photoluminescence (PL) spectra of porous silicon (po-Si) have been investigated. Isochronal anneals up to 300°C were done and PL spectra were recorded and compared to the un-annealed specimens. Minimal changes are induced for anneals below approximately 125°C; however, significant reduction in PL intensity occurs following anneals at T?≥?200°C. Deconvolution of the PL spectra into five distinct Gaussian bands reveals that at least two of the bands are attributable to non-quantum confinement mechanisms. Specifically, bands appearing at 1.58 and 1.78?eV are ascribed to non-bridging oxygen hole related defects. Recovery of PL intensity following thermal annealing occurs over a period of several days at a rate that is dependent upon annealing temperature and environment. Passivation of Si dangling bonds on the po-Si surface via effusion of hydrogen and incorporation of oxygen is responsible for the observed variations in PL intensity.  相似文献   

6.
本文研究了GaP中普遍出现的1.71eV光致发光(PL)宽带。这是一个与多个杂质能级有关的发光带,由吸收谱和光致发光激发谱(PLE)检测到在价带上方0.37—0.089eV范围内与该发光带有关的深能级。时间分辨谱测量表明。随着衰减过程的延续,谱峰移向低能方向,说明该带起源于D—A对复合。讨论了该发光带与背景Cu杂质有关的可能性及其发光机制和激发途径。  相似文献   

7.
The dynamics of electron excitations and luminescence of LiB3O5 (LBO) single crystals was studied using low-temperature luminescence vacuum ultraviolet spectroscopy with a subnanosecond time resolution under photoexcitation with synchrotron radiation. The kinetics of the photoluminescence (PL) decay, the time-resolved PL emission spectra, and the time-resolved PL excitation spectra of LBO were measured at 7 and 290 K, respectively. The PL emission bands peaking at 2.7 eV and 3.3 eV were attributed to the radiative transitions of electronic excitations connected with lattice defects of LBO. The intrinsic PL emission bands at 3.6 and 4.2 eV were associated with the radiative annihilation of two kinds of self-trapped electron excitations in LBO. The processes responsible for the formation of localized electron excitations in LBO were discussed and compared with those taking place in wide-gap oxides.  相似文献   

8.
Measurements of emission spectra, excitation spectra, intensity dependence of the luminescence, decay of the luminescence, and temperature dependence of the luminescence in ZnO are reported. The results for the emission at 1·70 eV, with the exception of the decay of the luminescence, were found to be similar to those of the yellow (2·02 eV) emission band in ZnO. Both bands could be excited at the band edge and directly, the intensity of both bands was found to be linear with excitation strength and the asymptotic regions of the temperature dependence of both bands could be approximated by exponential functions. It is proposed that the luminescent transition is an electron transition from the edge of the conduction band to a hole trapped in the bulk at 1·60 eV above the edge of the valence band, and that the luminescence center is an unassociated acceptor-like center.  相似文献   

9.
Low-temperature photoluminescence (PL) of unactivated KDP crystals under selective synchrotron excitation is for the first time measured with subnanosecond time resolution. Time-resolved PL (2–6 eV) and PL excitation (4–35 eV) spectra, as well as PL kinetics, are measured at 7 K. From the acquired experimental data, luminescent bands related to intrinsic defects of the KDP lattice are identified; in particular, the long-wave band at 2.6 eV is assigned to L defects, and the band at 3.5–3.6 eV is attributed to D defects. An efficient energy transfer over the hydrogen sublattice is shown to take place in KDP at low temperatures. It results in the efficient excitation of L and D center photoluminescence in the fundamental absorption region, at electron transitions to the bottom levels of the conduction band, corresponding to the states of the hydrogen atom. The band gap E g is evaluated to be 8.0–8.8 eV.  相似文献   

10.
本文报道了氢化非晶碳薄膜在2.9-4.5eV光激发下的发光谱。它的光致发光谱是无结构的不对称宽带,半宽度约为0.8eV。在低于3.56eV的光激发下,谱带的峰值能量随激发能量的降低明显红移。在安德森带结构和指数分布的带尾态密度的基础上,考虑了尾态中粒子的两种跃迁过程,实验的PL谱就可得到解释。并用这个简单模型计算了这种材料的光致发光谱特征。  相似文献   

11.
We report an experimental investigation of the emission spectra of a 1000 mol ppm sol–gel Ge-doped silica by fine tuning the excitation energy in the ultraviolet (UV) range, around 5 eV, and in the vacuum-UV range, around 7.3 eV, at room temperature and at 10 K. The sample is characterized by a blue (centered at 3.2 eV) and an UV (centered at 4.3 eV) bands. We have found that the ratio between the area of the blue and the UV bands depends on the temperature and on the excitation energy in both the vacuum-UV and the UV range. At both temperatures the spectral features of the blue and the UV bands are weakly affected when the excitation is varied in the vacuum-UV. At variance, under UV excitation the peaks of the bands are shifted and also their widths are changed. These results are interpreted in terms of distinct excitation channels of the luminescence that are influenced in a different way by the structural inhomogeneity of point defects.  相似文献   

12.
Spectral analyses of photoluminescence of yttriastabilized zirconia single crystals are carried out in the temperature range from 90 K to 330 K. Over the whole temperature range the emission spectrum can be decomposed into two broad bands. The main band is centred in the yellow-orange region of the spectrum and the secondary in the green region. The temperature dependence of the emission spectrum is tentatively analyzed in terms of the first three moments of the two band shapes. In addition, thermal quenching energy is determined to be 0.10 eV for both the yellow-orange and green bands. Results are discussed on basis of the major defects, oxygen vacancies and complexes formed by associating with the Y3+ ions.  相似文献   

13.
A typical porous structure with pores diameters ranging from 10 to 50 nm has been obtained by electrochemical etching of (1 0 0) heavily doped p-type GaAs substrate in HF solution. Room temperature photoluminescence (PL) investigations of the porous GaAs (π-GaAs) reveal the presence of two PL bands, I1 and I2, located at 1.403 and 1.877 eV, respectively. After GaAs capping, the I1 and I2 PL bands exhibit opposite shift trends. However, the emission efficiency of these two bands is not strongly modified. Low temperature PL of capped porous GaAs versus injection levels shows that the I1 PL band exhibits a red shift while the I2 PL band exhibits a blue shift with increasing injection levels. The I2 PL band intensity temperature dependence shows an anomalous behaviour and its energy location shows a blue shift as temperature increases. The observed PL bands act independently and are attributed to electron – hole recombination in porous GaAs and to the well-known quantum confinement effects in GaAs nanocrystallites. The I2 PL band excitation power and temperature dependencies were explained by the filling effect of GaAs nanocrystallites energy states.  相似文献   

14.
采用原子层沉积技术(ALD),以二乙基锌和水为前驱体,在衬底温度分别为110和190 ℃的条件下制备了致密的氧化锌纳米薄膜。采用X射线光电子能谱,荧光光谱和椭偏仪等表征手段对薄膜的成分和光学性质进行了研究。结果表明,随着沉积温度的增加,氧化锌薄膜内—OH含量降低,说明氧化锌薄膜生长过程中的化学反应更加完全;另外,沉积温度增加后,薄膜在365 nm处的激子发射峰出现了明显的增强,同时可见光区的荧光发射峰消失,表明薄膜内的缺陷态减少。随着成膜质量的提高,氧化锌薄膜的电子迁移率从25提高至32 cm2·(V·S)-1。椭偏测量的拟合结果表明,在375~800 nm的波长范围内,氧化锌薄膜的折射率逐渐从2.33降至1.9,呈现出明显的色散现象;另外,不同温度下制备的氧化锌薄膜光学带隙均为3.27 eV左右,这说明沉积温度对薄膜的带隙没有明显影响。  相似文献   

15.

Photochemical inhomogeneity in the reduction process of the optical activity related to Ge oxygen deficient point defects in silica, characterized by an absorption band centered at 5.15 v eV and two emission bands centered at 3.2 v eV and 4.3 v eV, have been investigated. We have made a comparative study of the stationary and time dependent photoluminescence under excitation in the UV (5 v eV) and in the vacuum-UV (7.4 v eV) ranges in natural silica samples with native and with n -irradiation bleached optical activity. Our measurements evidence that the same spectral features are observed in the native and in the irradiated samples, but for an intensity reduction in the irradiated ones. Moreover, the time decay of the photoluminescence at 4.3 v eV is the same independently from the irradiation of the sample. On the basis of these results it is suggested that the inhomogeneous distribution of defects is not changed by the irradiation.  相似文献   

16.
采用阴极还原方法,在透明导电玻璃(ITO)上制备了高c轴择优取向的ZnO薄膜.通过X射线衍射、扫描电子显微镜等表征技术,研究了沉积电流对ZnO薄膜的结构、应力状态及表面形貌的影响;利用光致荧光光谱及透射光谱等分析方法,探讨了沉积电流变化对ZnO薄膜的光学性能的影响.研究结果显示:各沉积电流下均可制得高c轴取向的ZnO薄膜;薄膜表面形貌受电流的影响较大;从透射谱可以看出,薄膜在可见光波段有较高透射率,且薄膜厚度随沉积电流的增大而增大.光致荧光测量表明,电化学沉积的ZnO薄膜具有明显的带隙展宽.而且,随着沉积电流的增加,带隙发光强度逐渐减弱,缺陷发光逐渐增强.  相似文献   

17.
This paper reports on a study of the dynamics of electronic excitations in KBe2BO3F2 (KBBF) crystals by low-temperature luminescent vacuum ultraviolet spectroscopy with nanosecond time resolution under photoexcitation by synchrotron radiation. The first data have been obtained on the kinetics of photoluminescence (PL) decay, time-resolved PL spectra, time-resolved PL excitation spectra, and reflection spectra at 7 K; the estimation has been performed for the band gap E g = 10.6−11.0 eV; the predominantly excitonic mechanism for PL excitation at 3.88 eV has been identified; and defect luminescence bands at 3.03 and 4.30 eV have been revealed. The channels of generation and decay of electronic excitations in KBBF crystals have been discussed.  相似文献   

18.
Photoluminescence (PL) measurement has been made on P-doped p-GaS. The 2.35 and 2.12 eV emission bands are observed in the PL spectrum of P-doped sample at 77 K. The temperature dependence of full-width at half-maximum and the shape of the PL spectrum of the 2.12 eV emission band are characterized by the recombination mechanism of the configurational coordinate model. It is found that the 2.12 eV emission band is related to the complex center of vacancy and acceptor due to P atoms. It is found from the presence of the complex center that the P-doped samples include a high concentration of defects or defect complexes.  相似文献   

19.
碲化锌的光致发光及其温度效应   总被引:1,自引:1,他引:0  
研究了未故意掺杂的ZnTe晶体的光致发光光谱及其温度效应.光致发光光谱在室温下仅包含一个谱带,液氮温度下由四个谱带组成.由发光光谱的温度效应实验结果导出了未故意掺杂的ZnTe晶体中的Li受主能级和浅施主能级的激活能分别为65meV和20meV.讨论了液氮温度下光致发光光谱中的19054cm-1带的一个可能起源.  相似文献   

20.
Si-rich oxide/SiO2 multilayer films with different SiO2 layer thicknesses have been deposited by the plasma enhanced chemical vapor deposition technique, and crystallized Si quantum dot (Si-QD)/SiO2 multilayer films are obtained after annealing at 1100 °C. The photoluminescence (PL) intensity of the multilayer films increases significantly with increasing SiO2 layer thickness, and the PL peak shifts from 1.25 eV to 1.34 eV. The PL excitation spectra indicate that the maximal PL excitation intensity is located at 4.1 eV, and an excitation–transfer mechanism exists in the excitation processes. The PL decay time for a certain wavelength is a constant when the SiO2 thickness is larger than 2 nm, and a slow PL decay process is obtained when the SiO2 layer is 1 nm. In addition, the PL peak shifts toward high energy with decreasing temperature only when the SiO2 layer is thick enough. Detailed analyses show that the mechanism of PL changes from the quantum confinement effect to interface defects with decreasing SiO2 layer thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号