首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
以醋酸锂和钛酸四丁酯为原料,以乙醇为溶剂,采用溶胶-凝胶法制备Li4Ti5O12;以苯胺、过硫酸铵为原料,以盐酸为溶剂,采用原位聚合法合成Li4Ti5O12-聚苯胺复合材料。采用X-射线衍射、红外光谱和电化学测试等对复合材料进行了表征。结果表明,聚苯胺的加入明显提高了Li4Ti5O12的电子导电性能,Li4Ti5O12-PAn复合材料具有比Li4Ti5O12更好的高倍率性能和循环稳定性。0.1C和2.0C放电时Li4Ti5O12-PAn的放电容量达到了191.3和148.9 mAh·g-1,经80次循环后二者平均每次循环容量衰减率分别为0.13%和0.61%。  相似文献   

2.
Li4Ti5O12/(Ag+C)电极材料的固相合成及电化学性能   总被引:1,自引:0,他引:1  
以Li2CO3,TiO2为原料,葡萄糖为碳源,采用固相煅烧工艺合成了亚微米级的Li4Ti5O12/C复合负极材料。并将之与AgNO3复合,采用固相方法制备出了Ag表面修饰的Li4Ti5O12/(Ag+C)复合材料。采用XRD、SEM和TEM测试方法对材料的微结构进行了表征。结果表明,C的存在对Ag单质在Li4Ti5O12/C颗粒表面的大量形成起到了积极的促进作用,从而很大程度地提高了Li4Ti5O12/C的电导率,因此有效地改善了其电化学性能。在1C倍率下,Li4Ti5O12/(Ag+C)复合材料的首次放电容量达到了164 mAh·g-1。  相似文献   

3.
LiMn2O4表面包覆Li4Ti5O12的制备及倍率特性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用固相法合成了尖晶石型LiMn2O4,并通过溶胶-凝胶法制备了不同物质的量的百分比含量Li4Ti5O12包覆的正极材料。X-射线衍射和扫描电镜结果表明,Li4Ti5O12微粒包覆在LiMn2O4的表面没有产生晶体结构的变化。实验电池在室温下,以1C,2C和5C倍率作充放电循环测试;结果表明,与未包覆的LiMn2O4相比,表面包覆Li4Ti5O12微粒的正极材料在高倍率下具有更好的循环稳定性。  相似文献   

4.
首先采用共沉淀方法制备富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2原始样品(P-LRMO),然后通过简单的湿化学法以及低温煅烧方法对其进行不同含量Ga2O3原位包覆。透射电子显微镜(TEM)以及X射线光电子能谱(XPS)结果表明在P-LRMO表面成功合成了Ga2O3包覆层。电化学测试结果表明:含有3%Ga2O3的改性材料G3-LRMO具有最优的电化学性能,其在0.1C倍率(电流密度为25 mA·g-1)下首圈充放电比容量可以达到270.1 mAh·g-1,在5C倍率下容量仍能保持127.4 mAh·g-1,优于未改性材料的90.7 mAh·g-1,表现出优异的倍率性能。G3-LRMO在1C倍率下循环200圈后仍有190.7 mAh·g-1的容量,容量保持率由未改性前的72.9%提升至85.6%,证明Ga2O3包覆改性能有效提升富锂锰基材料的循环稳定性。并且,G3-LRMO在1C倍率下循环100圈后,电荷转移阻抗(Rct)为107.7 Ω,远低于未改性材料的251.5 Ω,表明Ga2O3包覆层能提高材料的电子传输速率。  相似文献   

5.
首先采用共沉淀方法制备富锂锰基正极材料 Li1.2Mn0.54Ni0.13Co0.13O2原始样品(P-LRMO), 然后通过简单的湿化学法以及低温煅烧方法对其进行不同含量 Ga2O3原位包覆。透射电子显微镜(TEM)以及 X射线光电子能谱(XPS)结果表明在 P-LRMO表面成功合成了 Ga2O3包覆层。电化学测试结果表明:含有 3 %Ga2O3的改性材料 G3-LRMO具有最优的电化学性能, 其在 0.1C倍率(电流密度为 25 mA·g-1)下首圈充放电比容量可以达到 270.1 mAh·g-1, 在 5C倍率下容量仍能保持 127.4 mAh·g-1, 优于未改性材料的 90.7 mAh·g-1, 表现出优异的倍率性能。G3-LRMO在 1C倍率下循环 200圈后仍有 190.7 mAh·g-1的容量, 容量保持率由未改性前的 72.9 %提升至 85.6 %, 证明 Ga2O3包覆改性能有效提升富锂锰基材料的循环稳定性。并且, G3-LRMO在 1C倍率下循环 100圈后, 电荷转移阻抗(Rct)为 107.7 Ω, 远低于未改性材料的 251.5 Ω, 表明 Ga2O3包覆层能提高材料的电子传输速率。  相似文献   

6.
陆海纬  周永宁   《无机化学学报》2006,22(10):1802-1806
首次采用电纺丝技术结合高温退火成功地构置了含尖晶石Li4Ti5O12的纳米纤维丝三维(3D)网状结构,并测量了三维电池的充放电性能。X射线衍射谱(XRD)、扫描电子显微镜(SEM)和电池循环性能测试等方法表征纤维丝3D结构和电化学性能。研究结果表明了Li4Ti5O12纳米丝的零应变特性、构建的3D阵列的结构稳定性和在大电流密度下较好的充放电性能。显示了Li4Ti5O12可作为3D电池的电极材料。  相似文献   

7.
利用XRD、SEM、EDS、BET、激光粒度、循环伏安、恒流充放电、交流阻抗方法研究了葡萄糖为碳源对溶胶凝胶法制备Li1.2Ni0.13Co0.13Mn0.54O2正极材料的结构、形貌以及电化学性能的影响。结果表明:与前驱体中未加入葡萄糖所制备的材料相比,掺葡萄糖后样品颗粒分布相对均匀,粒径变小,D50从11.56减小至9.94μm,比表面积增加近1倍。经0.05C充放电活化后,未掺葡萄糖和掺葡萄糖样品0.2C放电比容量分别为183.4、211.6mAh·g-1,2C容量分别为其0.2C的62.2%、77.6%。1C循环50次后放电比容量分别为133.3、173.6mAh·g-1,容量保持率分别为95.1%、100%。掺葡萄糖可降低首次不可逆容量损失,提高材料的倍率性能与循环稳定性,减少电荷传递阻抗、Warburg阻抗以及双电层弥散效应,但不改变材料的晶型结构。  相似文献   

8.
Li3V2(PO4)3的溶胶-凝胶合成及其性能研究   总被引:1,自引:0,他引:1  
以LiOH·H2O(LiF、Li2CO3、LiCH3COO·2H2O)、NH4VO3、H3PO4和柠檬酸为原料,采用Sol-gel法合成锂离子电池正极材料Li3V2(PO4)3。优化了锂源、溶胶的pH值、预烧条件、煅烧温度等合成条件,并采用XRD、SEM、恒电流充放电及循环伏安试验等方法,研究了所合成的Li3V2(PO4)3的结构形貌和电化学性能。结果表明,以LiOH·H2O为锂源,溶胶的pH值等于3,于氩气氢气(体积比9∶1)混合气中300 ℃预烧 4 h,并在氩气氢气(体积比9∶1)混合气中600 ℃煅烧8 h合成的Li3V2(PO4)3正极材料为标准的单斜结构,具有较高的放电比容量和较好的循环稳定性,0.1C和1C倍率下首次放电比容量分别为130 mAh·g-1和129 mAh·g-1;1C倍率下循环40次后,容量仍为127 mAh·g-1,容量保持率为98.4%;随后又进行10C倍率放电,10次循环后容量为105 mAh·g-1,容量保有率达98.1%。循环伏安测试表明,该正极材料具有较好的电化学可逆性。  相似文献   

9.
锂离子电池用Li4Ti5O12-碳复合材料的制备与电化学性能   总被引:6,自引:0,他引:6  
Li4Ti5O12-C composite was prepared by sol-gel method using ethyl alcohol as solvent, lithium acetate and tetrabutyl titanate as raw materials, and graphite as carbon source. Li4Ti5O12-C composites were characterized by thermogravimertric(TG) analysis and differential thermal analysis(DTA), X-ray diffraction(XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and electrochemical tests. Results show that Li4Ti5O12-C composite with 5% carbon containing can be obtained by annealing the precursor at 600 ℃ for 6 h in N2 atomsphere. The composites can deliver a specific capacity of 167.1 mAh·g-1, 99.0% and 105.1% of the capacity can be retained after discharged for 80 times at 0.1C and 2.0C, respectively. Compared with pure Li4Ti5O12, Li4Ti5O12-C composite shares larger discharge capacity, better cyclability and rate performance.  相似文献   

10.
通过原位反应法,利用富镍层状金属氧化物LiNi0.8Co0.1Mn0.1O2(LNCM811)正极材料表面残余的氢氧化锂和碳酸锂,与C8H20O4Ti和(NH4)H2PO4反应,在LNCM811表面原位生成快离子导体LiTi2(PO43(LTP)包覆层。这种原位反应的包覆方法有利于移除LNCM811表面有害的残留物氢氧化锂和碳酸锂。而且,获得的LTP均匀包覆层不仅可以有效地抑制LNCM811表面和电解液的直接接触及其副反应,还可以确保充放电循环过程中LNCM811正极材料的快速Li+传导。因此,在LTP包覆层的多重作用下,LTP包覆的LNCM811正极材料具有优异的循环稳定性和倍率性能:在0.2C时,首次放电比容量高达200.6 mAh·g-1,200圈后的可逆容量依然有155.7 mAh·g-1;在2C和5C的高电流密度下,200圈后的可逆容量仍然有126.4和111.9 mAh·g-1。  相似文献   

11.
以乙酰丙酮(ACAC)为螯合剂、聚乙二醇(PEG)为分散剂,采用溶胶-凝胶法合成了尖晶石型Li4Ti5Ol2/TiN材料.考察了TiN膜对尖晶石型Li4Ti5Ol2锂离子电池负极材料电化学性能的影响.利用X射线光电子能谱(XPS)对Li4Ti5O12表面的TiN膜进行了分析.X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明,Li4Ti5Ol2/TiN材料为结晶良好的亚微米纯相尖晶石型钛酸锂.电化学性能测试表明,该材料的首次放电比容量为173.0mAh·g-1,并且具有良好的循环性能,以0.2C、1C、2C、5C倍率放电进行测试,10次循环后比容量分别为170.6、147.6、135.6、111.0mAh·g-1,较之表面无TiN膜的钛酸锂材料表现出更好的倍率特性.循环伏安曲线(CV),交流阻抗图谱(EIS)进一步论证了TiN膜改善了尖晶石型Li4Ti5Ol2锂离子电池负极材料的电化学性能.  相似文献   

12.
将LiNO3和Ti(OC4H9)4填填充在有序介孔碳CMK-3 孔道中, 然后烧结合成了Li4Ti5O12/CMK-3复合材料. 利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)对其结构和微观形貌进行了表征. 利用差热-热重分析(TG-DTA)测试复合材料中Li4Ti5O12的含量. 利用充放电测试、循环伏安和电化学阻抗技术考察了复合材料作为锂离子电池负极材料的性能. 发现Li4Ti5O12分布在CMK-3孔道中及其周围, 复合材料的高倍率充放电性能显著优于商品Li4Ti5O12, 复合材料中Li4Ti5O12的比容量明显高于除去CMK-3的样品(在1C倍率时比容量为117.8 mAh·g-1), 其0.5C、1C和5C倍率的放电比容量分别为160、143 和131 mAh·g-1, 库仑效率接近100%, 5C倍率时循环100次的容量损失率只有0.62%. 本研究结果表明CMK-3明显提高了Li4Ti5O12的高倍率充放电性能, 可能是CMK-3特殊的孔道结构和良好的导电性减小了Li4Ti5O12的粒径并提高了其电导率.  相似文献   

13.
分别以四水磷酸铁(FePO4·4H2O)和二水草酸亚铁(FeC2O4·2H2O)为铁源,采用简单便捷的流变相法制备了碳包覆LiFe0.5Co0.5PO4固溶体材料(LiFe0.5Co0.5PO4/C,简称为LFCP/C)。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、恒流充放电等测试手段对复合材料的物相、形貌结构和电化学性能进行了表征和测试。结果表明,2种铁源得到的材料均为橄榄石晶型结构且结晶度良好,二者在颗粒尺寸分布、碳包覆效果和电化学性能方面具有显著的差别。用作锂离子电池正极材料时,以FeC2O4·2H2O为原料得到的LFCP/C具有更优异的电性能:在2.5~5.0 V电压范围内,0.1C倍率下(1C=150 mA·g-1),放电比容量为137.5 mAh·g-1,在10C仍具有57.6 mAh·g-1的放电比容量;0.5C循环100次后容量仍保持78.1%。该样品更佳的电化学性能主要得益于其更小的平均颗粒尺寸,更高的比表面积和理想的碳包覆效果。  相似文献   

14.
Li4Ti5O12 thin films for rechargeable lithium batteries were prepared by a sol-gel method with poly(vinylpyrrolidone). Interfacial properties of lithium insertion into Li4Ti5O12 thin film were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). Redox peaks in CV were very sharp even at a fast scan rate of 50 mV s−1, indicating that Li4Ti5O12 thin film had a fast electrochemical response, and that an apparent chemical diffusion coefficient of Li+ ion was estimated to be 6.8×10−11 cm2 s−1 from a dependence of peak current on sweep rates. From EIS, it can be seen that Li+ ions become more mobile at 1.55 V vs. Li/Li+, corresponding to a two-phase region, and the chemical diffusion coefficients of Li+ ion ranged from 10−10 to 10−12 cm2 s−1 at various potentials. The chemical diffusion coefficients of Li+ ion in Li4Ti5O12 were also estimated from PITT. They were in a range of 10−11-10−12 cm2 s−1.  相似文献   

15.
利用具有三维连续纳米孔结构的热剥离石墨烯为骨架制备Li4Ti5O12/石墨烯纳米复合材料。通过乙醇挥发法在热剥离石墨烯的纳米孔道内引入前驱物,进一步高温热处理,在热剥离石墨烯的孔道内原位形成Li4Ti5O12纳米粒子。利用复合材料作为锂离子电池电极材料。电化学反应过程中,热剥离石墨烯的三维连续结构确保了Li4Ti5O12纳米粒子与石墨烯在长循环过程中的有效接触。因此,复合材料表现出优异的循环稳定性。在5C下,5 000次循环后,其容量保持率高达94%。  相似文献   

16.
以V2O5、NH4H2PO4、LiOH、柠檬酸、三嵌段聚合物表面活性剂P123为原料, 用流变相(RPR)法制备了Li3V2(PO4)3/C正极材料. 用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等方法表征, 结果表明: 材料为单一纯相的单斜晶体结构, 颗粒均匀并呈现珊瑚结构; 恒流充放电, 循环伏安(CV)及电化学交流阻抗(EIS)等电化学性能测试表明, 采用P123 辅助合成材料电化学性能明显优于未采用P123 辅助合成材料. 3.0-4.3 V放电区间, 0.1C充放电下P123 辅助合成Li3V2(PO4)3/C材料首次放电比容量为129.8 mAh·g-1, 经过50 次循环后容量只衰减0.9%; 倍率性能及循环性能优异, 1C、10C、25C的首次放电比容量分别为128.2、121.3、109.1 mAh·g-1, 50次循环后容量保持率分别为99.1%, 96.9%, 90.7%. 这归因于三嵌段聚合物P123 作为分散剂的同时也作为有机碳源在颗粒表面及间隙形成碳网络, 有利于材料导电率的改善, 降低了其电荷转移阻抗, 减小了电极充放电过程的极化现象.  相似文献   

17.
本文以LiOH.H2O、NH4VO3、H3PO4和柠檬酸为原料,采用溶胶-喷雾干燥法制备Li3V2(PO4)3/C正极材料,对比了喷雾前驱体直接煅烧与机械活化后煅烧的样品的结构、形貌及其电化学性能。采用XRD、SEM、BET和振实密度测试等对样品的结构、形貌等进行了表征;采用恒流充放电、CV和EIS等手段考察了材料的电化学性能。结果表明,溶胶-喷雾干燥得到的样品为多孔球壳形,其壳体由厚度为100 nm左右的纳米片组成,经机械活化后煅烧保持保持了其纳米片结构,其结晶度与振实密度改善较明显,电化学性能较优异。0.1C放电比容量为123.6 mAh.g-1,10C和20C高倍率放电比容量还高达107.8和106.0 mAh.g-1。电化学阻抗结果表明,由该方法制备的样品具有较小的电荷转移阻抗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号