首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文建立了构形树状小通道内流动沸腾换热模型,数值研究了树状通道网络内的流动沸腾换热特性,并与具有相同换热面积、入口直径的蛇形通道就泵功消耗、流动沸腾压降、通道温度变化和热有效性等指标进行了性能对比分析。研究表明,与蛇形通道相比,构形通道具有流动沸腾压降、泵功消耗小的优势,且其温度均匀性、热有效性也均优于蛇形通道。当热流密度为20 W/cm~2时,构形树状通道内流体的泵功消耗约为蛇形通道的一半,其热有效性为蛇形通道的1.9倍。  相似文献   

2.
为探究磁场强度和肋片高度对微通道内Fe3O4-H2O纳米磁流体流动换热性能的影响,采用数值模拟的方法,以开放式间断微通道热沉为研究对象,在雷诺数为200到500之间展开数值模拟研究,模拟微通道内流体工质流动换热过程。结果表明:进出口压降随雷诺数的增大而增大,且随着磁场强度的增大,压降的增大趋势愈显著;微通道的换热性能随着磁场强度的增大,呈现出先增大后减小的趋势;通过增加肋片高度,可以有效的提高热沉的传热性能。研究发现,开放型微通道综合换热性能优于封闭型,在所研究的参数范围内,微通道肋片高度达到0.9 mm时,综合换热性能和均温性最佳。  相似文献   

3.
韦小坡  陈威 《低温与超导》2022,(4):75-80+100
为了提高微通道热沉的水力性能和热力性能,采用等效比热容法对相变微胶囊悬浮液在固体肋和多孔肋微通道热沉内的流动与传热特性进行研究。结果表明:多孔肋可以使微通道热沉的压降显著降低,对热阻的影响随微通道内冷却剂流动距离变化。相变微胶囊悬浮液相变吸收潜热可以减小微通道热沉的热阻,但是粘度增大使得压降增大。多孔肋和相变微胶囊悬浮液都能提高微通道热沉的综合性能,相变微胶囊悬浮液在多孔肋微通道热沉中比水在固体肋微通道热沉中的综合性能提高了14%。  相似文献   

4.
本文对几种不同几何模型的低波纹通道进行了传热及阻力性能数值研究,在一定的流速范围内得出了传热和阻力的特性曲线.分析了通道高度、波纹波峰高度、通道宽度对流动与换热的影响.结果表明,通道高度越小,换热越强,同时压降也增加;波纹波峰高度越大,换热加强,压降也相应增加;通道宽度越大,换热几乎不变,但压降随之降低.  相似文献   

5.
本文通过数值求解三维的N-S方程以及能量守恒方程,研究了树型微通道网络热沉的温度分布特点,指出了常规树型网络结构在集成微电子冷却应用中的局限性,并通过详细的分析对其进行了局部改进.改进后的树型网络极大地提高了热沉的热性能同时还降低了压降.和平行微通道相比,改进后的树型微通道网络具有更小的压降,具有更小的热阻和更好的温度均匀性.因此具有很大的应用前景.  相似文献   

6.
对置于矩形通道流中的柱鳍热沉在压电风扇激励下的传热特性进行了实验研究,重点分析了通道气流流动雷诺数Re、压电风扇驱动电压U对热沉换热特性的影响。研究结果表明,通道流中压电风扇的激励能够改善柱鳍热沉的传热特性。相对于单纯的通道流,当压电风扇驱动电压为250 V时,在通道流雷诺数小于5300下,压电风扇激励可以提升柱鳍热沉表面换热能力20%以上;在通道流雷诺数介于7100和8800时,压电风扇激励可以提升柱鳍热沉表面换热能力12%左右。  相似文献   

7.
设计并搭建了以R134a为工质的微通道散热及可视化实验台。对R134a在不同饱和温度、流速、热流密度条件下流经微通道产生过冷沸腾状态时的换热性能进行了实验研究。研究了壁面过热度,质量流速对热沉换热系数和压降的影响,通过结果分析,将整得换热区域分为单相对流、过冷沸腾、饱和沸腾三个区域。并采用基于高速摄像机的可视化技术对微通道内气泡运动状态进行了分析。  相似文献   

8.
微通道内的沸腾两相流动是解决高热流密度下微电子设备散热最有潜力的手段之一。本文基于逆流式微通道热沉设计,实验研究了不同流量调配下逆流式微通道内的流动沸腾特性。讨论了流量分配对微通道内流动沸腾过程中传热特性、压降分布和壁面温度演化规律的影响。实验结果表明:当逆流式通道两侧的质量流量相同时,壁面呈现较好的温度均匀性,且两侧流动压降基本保持一致。两侧流量相差越大,其对应最大两相压降偏差越大。逆流式微通道的壁面温度分布和局部热点的位置可以通过改变两侧质量流量的大小实现有效控制。同时,微通道内流体的演化周期同样可以根据两侧质量流量的高低实现调控。  相似文献   

9.
搭建微小通道热沉系统实验台,分别测试了单进单出和两进两出方式的微小通道热沉的流动与传热特性。结果表明,在相同体积流量和微小通道热沉结构的条件下,单进单出热沉的传热系数高于两进两出热沉,而压降低于后者。在相同耗功下,单进单出热沉的传热系数明显高于两进两出热沉。同时,单进单出热沉均温性优于两进两出热沉。故热沉进出口采用单进单出的方式性能更优。  相似文献   

10.
本文基于传统微通道热沉的物理模型,建立了完全填充、三角形填充、梯形填充、渐扩梯形填充及底层填充5种不同几何布置形态的多孔金属微通道热沉的数值模型。在层流流动的范围内,对不同布置形态多孔金属微通道热沉的阻力系数、平均Nu数、热阻、有效温控系数及能效因子等相关参数进行了数值研究,并应用场协同原理对多孔金属强化微通道的换热性能进行了分析。结果表明:微通道热沉中填充多孔金属后可显著改善速度场与温度场之间的协同性,填充不同多孔金属布置形态的微通道热沉可使平均协同角减小9.6°~23.2°左右;5种不同多孔金属布置形态的热沉中,完全填充热沉的热阻最小,冷却效果最好;等泵功情况下,当Re数大于150时,完全填充和梯形填充热沉的综合换热性能均优于传统微通道。  相似文献   

11.
采用计算流体动力学方法,对两种不同浓度的水-Al2O3纳米流体以及五种不同高宽比的微通道热沉的流动换热特性开展了数值模拟研究.结果 表明,提高纳米颗粒体积分数可降低流固换热面的平均温度,从而提升纳米流体的换热能力,但同时也会显著提升系统的泵功率;通过改变微通道高宽比可有效提升热沉的换热能力,增大高宽比能够有效降低热沉受热面平均温度,且不会使得流动阻力损失显著增加;在所研究的参数范围内,微通道热沉高宽比存在最优值,当高宽比超过30时,换热系数不随高宽比增加而进一步提高.  相似文献   

12.
在内径为2mm的竖直细圆管内进行了向上流动的超临界对流换热实验。通过实验发现,质量流量、进口温度对壁面温度分布以及压降有很大影响;并讨论了换热发生增强和恶化的原因;用浮升力和热加速准则解释了其中的一些热流体现象。并基于FLUENT软件进行了数值计算,与实验结果进行比较,分析表明,数值计算预测壁面温度分布和压降有一定的适用性。  相似文献   

13.
为了深入了解空冷涡轮动叶的冷却机理和冷气流动特性,采用商业软件CFX5对旋转状态下某涡轮动叶的非对称蛇形内冷通道模型中的湍流流动和换热性能进行了数值模拟.得到了各主要换热面的换热系数分布,分析了通道内的流动规律.发现肋片结构与旋转因素引起了通道内的横向二次流,使整体的换热能力得到了增强,其中非对称因素及旋转因素导致了各个壁面的换热性能的差异.  相似文献   

14.
U型通道内部流动与换热的数值研究   总被引:1,自引:0,他引:1  
应用数值方法研究了燃气轮机叶片内部U型通道内流动与顶部换热特性.采用SST k-ω模型,分析了U型通道内光滑和带凹坑顶部结构以及不同Re数和旋转数对U型通道内部流动和顶部换热的影响。结果表明:在静止条件下,带凹坑结构的通道顶部Nu数较高,并且随着凹坑深度的增加,通道顶部换热能力增强;并且凹坑结构对通道压降的影响较小。随雷诺数增大,凹坑对通道顶部换热增强的幅度降低。在旋转状态下,随着旋转数的增加,通道顶部换热能力增强,但通道压降增大。  相似文献   

15.
为考察基于矩形平行细小槽道的压降及传热的综合性能,实验测试了去离子水流过三种不同截面尺寸的平行细小槽道热沉的流动与传热特性,槽道截面尺寸分别为1mm×1mm、0.5mm×1mm、0.5mm×1.2mm,表面热流密度为5.6~33.3W/cm2,工质流量为0.3~5L/min。实验测量了压降及对流换热系数随流量变化关系;综合分析了三种热沉的压降-温度随流量变化规律;得出了细小槽道热沉在给定流量范围内,表面温度为70℃时的极限热流密度。实验结果表明:随着流量增加,表面温度与压降呈相反变化趋势,存在一个最佳工况点,该工况点处的工质流量随热流密度增加而增大;文中所设计的热沉在工质流量为1.3~4.75L/min,表面温度控制在70℃时所能承受的极限热流密度为70W/cm2,此时压降约为170kPa。  相似文献   

16.
碳氢燃料流动换热与裂解反应的建模及仿真   总被引:4,自引:0,他引:4  
碳氢燃料的化学热沉的释放特性不仅与燃料自身的化学性质有关,还受燃料温度和驻留时间等流动换热因素的影响,是高超声速热防护技术中的重要研究课题。考虑流动换热对裂解反应的影响及裂解反应所引起的组分变化对流动换热过程的影响,本文提出了一个一维非稳态的模型来研究碳氢燃料的裂解反应与流动换热过程的耦合特性.并对不同的温度、工作压力...  相似文献   

17.
针对微通道冷却和冲击射流冷却方式的不足,设计了一种新的带冲击射流的柱肋结构的通道热沉,通过数值模拟的方式研究其流动特性和换热性能,模拟工况为加热热流密度为400W/cm~2,进口总压从3.5~12.5 kPa,出口静压为500 Pa,工质为水,热沉的材料为铜,进口温度为300 K。模拟计算结果表明,该结构具有较高的换热效果和良好的表面温度均匀性,在进口总压为3.5 kPa时,表面的最高温度不超过380 K,加热面最高温度和最低温度的差值约为12 K;而当进口总压为12.5 kPa时,最高温度和温差值分别为368 K和约5 K。在进口总压为3.5~12.5 kPa,所研究结构的热沉的流量为3.03~6.32 g/s。  相似文献   

18.
微通道内超临界二氧化碳的压降与传热特性   总被引:4,自引:0,他引:4  
进行了微通道内超临界CO2的局部和平均传热与压降特性实验研究。结果表明,临界点附近物性参数的剧烈变 化使压降增大,但传热被大大强化。同时也发现,系统压力、质量流速及CO2温度对流动与传热特性有重要影响。在大 量实验数据的基础上,得出了冷却条件下水平微通道内超临界CO2强制对流换热关联式。  相似文献   

19.
针对聚光光伏(CPV) 电池高热流密度散热问题, 本文提出了射流冲击与分形微通道散热相结合的解决方案, 对其流动和换热进行了模拟. 首先对分形微通道的分形级数进行分析, 四级相比三级分形微通道换热系数只增加了4.62% , 压降却升高了54.37% ; 接着对管道截面形状进行优化, 对圆形截面, 方形渐缩截面和扁管截面内流体的流动进行了模拟, 结果表明在换热量相近的情况下, 扁管拥有最低的压降; 随后对比分叉处倒圆角、 倒角和 Y形三种布置形状, 结果表明 Y 形布置有效地减少了内部流体的涡旋区, 能够在牺牲较少的换热面积的条件下, 将压降降低85 .51 % . 最后在相同水力直径条件下研究单个喷嘴、 均匀喷嘴阵列、 非均匀喷嘴阵列射流冲击分形微通道的换热性能, 模拟结果表明, 非均匀喷嘴阵列分形微通道拥有最佳的换热性能, 且压降降低了25 .99 % .  相似文献   

20.
本文对超临界压力CO_2在微细蛇形管内层流对流换热开展了数值模拟研究。研究的蛇形管内径0.5 mm,弯曲半径2 mm,入口雷诺数200~500,压力9 MPa。分析了变物性、浮升力和离心力的影响,对特征截面温度与速度分布进行了详细分析。结果表明:向上流动时,截面温度和速度呈对称分布,水平流动时,对称性消失;截面上两对涡的分布在向上和水平流动时呈现不同特性,换热强化和减弱区域不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号