首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
基于微通道蒸发器的强化传热,通过实验控制蒸发器入口处制冷剂的温度,分析过冷度对微通道蒸发器的壁面温度、制冷量、传热系数及压降的影响。研究表明:随着过冷度的增大,微通道蒸发器的壁面温度分布的均匀性在过冷度4.5℃后明显变差;流量分配均匀性提升;综合传热性能提高。  相似文献   

2.
以去离子水和质量分数为0.3%的水基纳米流体为工质,在当量直径为1.241mm的矩形微通道内进行了两相流流动沸腾的实验研究,并借助高速摄像仪对矩形微通道内流型随着质量流量及热流密度的变化进行了观察分析。实验结果表明:单位长度上的两相摩擦压降会随着质量流速的提升而提高;单位长度上的两相摩擦压降会随着热流密度的增大而升高;减小质量流速和提高其热流密度均会加快气泡的产生并提高气泡的脱离直径,当热流密度增大到一定程度时,通道内几乎为环状流与液态单相流交替出现,且环状流占周期中的较长时间。  相似文献   

3.
1引言微型结构由于其巨大的应用潜力,作为热控制和冷却的有效手段已被引入电子集成电路、生物医学、航天、高效紧凑式与微型换热器、材料加工等现代高新技术领域。由于相交换热能传递更多的热量,微结构中的流动沸腾受到了日益重视。但微通道中流体流动和换热的特性当然与所用工质有关。微通道内液体混合物的流动沸腾至今极少见到公开报道[‘]。彭和王等人l‘-‘]报道了对微通道和微槽结构内单组元液体流动沸腾的研究,发现起始沸腾点所需壁面过热度比常规尺度槽道内的低得多,没有明显的部分核沸腾现象,同时发现微槽尺寸对流动沸腾的…  相似文献   

4.
设计并搭建了以R134a为工质的微通道散热及可视化实验台。对R134a在不同饱和温度、流速、热流密度条件下流经微通道产生过冷沸腾状态时的换热性能进行了实验研究。研究了壁面过热度,质量流速对热沉换热系数和压降的影响,通过结果分析,将整得换热区域分为单相对流、过冷沸腾、饱和沸腾三个区域。并采用基于高速摄像机的可视化技术对微通道内气泡运动状态进行了分析。  相似文献   

5.
微通道流动沸腾冷却技术兼具相变潜热和微尺度效应的诸多优点,是解决微电子器件热致失效问题的重要方法之一. HFE-7100是一种安全环保的电子氟化液,特别适用于微电子器件的冷却.本文在水力直径为0.5 mm的矩形平行微通道内,对HFE-7100的流动沸腾传热和两相流动特性进行了实验研究,测量范围为常压下质量流率88.9—277.8 kg·m–2·s–1、入口过冷度20.5—35.5℃和有效热流密度12—279 kW·m–2.本文分析了质量流率、入口过冷度、有效热流密度和干度对传热系数和压降的影响,发现在较低的入口过冷度下HFE-7100出现了沸腾迟滞现象,且增大入口过冷度和质量流率会延缓沸腾起始点的发生,且会提高传热系数和临界热流密度.两相压降受有效热流密度影响较大,且在定干度下不同质量流率的两相压降在塞状流和环状流阶段有明显差异.同时,通过观测两相流型,对流动沸腾传热现象进行了分析.本文还将两相压降实验数据与文献关联式预测值进行了对比,与Lockhart提出的关联式预测值偏差为19.6%.本文研究结果可为微电子器件散热设...  相似文献   

6.
微通道内超临界二氧化碳的压降与传热特性   总被引:4,自引:0,他引:4  
进行了微通道内超临界CO2的局部和平均传热与压降特性实验研究。结果表明,临界点附近物性参数的剧烈变 化使压降增大,但传热被大大强化。同时也发现,系统压力、质量流速及CO2温度对流动与传热特性有重要影响。在大 量实验数据的基础上,得出了冷却条件下水平微通道内超临界CO2强制对流换热关联式。  相似文献   

7.
在内径为2mm的竖直细圆管内进行了向上流动的超临界对流换热实验。通过实验发现,质量流量、进口温度对壁面温度分布以及压降有很大影响;并讨论了换热发生增强和恶化的原因;用浮升力和热加速准则解释了其中的一些热流体现象。并基于FLUENT软件进行了数值计算,与实验结果进行比较,分析表明,数值计算预测壁面温度分布和压降有一定的适用性。  相似文献   

8.
本文建立了构形树状小通道内流动沸腾换热模型,数值研究了树状通道网络内的流动沸腾换热特性,并与具有相同换热面积、入口直径的蛇形通道就泵功消耗、流动沸腾压降、通道温度变化和热有效性等指标进行了性能对比分析。研究表明,与蛇形通道相比,构形通道具有流动沸腾压降、泵功消耗小的优势,且其温度均匀性、热有效性也均优于蛇形通道。当热流密度为20 W/cm~2时,构形树状通道内流体的泵功消耗约为蛇形通道的一半,其热有效性为蛇形通道的1.9倍。  相似文献   

9.
生物膜滴滤床内温度分布特性实验研究   总被引:1,自引:0,他引:1  
对生物膜滴滤塔填料床内温度分布特性进行了实验研究,获得了循环液流量、气体流量以及进口甲苯浓度对填料床内温度分布的影响规律。实验结果表明:填料床内温度沿循环液流动方向逐渐升高,表明生物降解代谢反应属于放热反应;在逆流操作系统中,填料床下部碳源丰富,填料床下部的温升明显大于上部的温升;随着循环液流量的增大,填料床内沿流动方向上的温升越小;液体流量较大时,填料床内温升随着气体流量的增大而减小;滴滤塔进口甲苯浓度越大, 填料床内温升越大。  相似文献   

10.
微通道换热器以其良好换热能力已被广泛地应用于当前的实验研究中,通过数值模拟的方法对通断微通道内的流动特性进行了研究。重点分析了通道结构对微通道内速度分布、压力分布的影响。结果显示,通断通道的整体压降比连续通道增加了17%,当微通道内的雷诺数1 500时,微通道内单相流动达到了旺盛湍流,宽高比对压降的影响消失。通断通道结构下的流动转捩雷诺数600~800之间,比常规尺度下的转捩雷诺数低得多(2 300左右)。通过通道数对流动性能的研究发现,增加通道数,有利于降低整体压降并增加流动稳定性。  相似文献   

11.
利用Mixture多相流模型对R32在2 mm水平微细光管内流动沸腾进行了三维稳态数值模拟。模拟的工况范围为:质量流速200~400 kg/(m~2s),热流密度10~40 kW/m~2,饱和温度15~20℃。结果表明:质量流速的增加消弱了重力对两相分布的影响;热流密度的增加强化了壁面附近的核态沸腾。数值模拟的换热系数和压降与实验结果的平均偏差分别为11.3%和-1.1%。  相似文献   

12.
《工程热物理学报》2021,42(9):2431-2437
本文建立了一种基于柔性金属微通道内流动沸腾换热的圆柱型锂离子电池热管理系统。柔性铝微通道结构能够与圆柱型电池很好的接触,并且槽道内工质流动与相变换热可以有效地带走电池放电过程中产生的热量。实验研究了柔性铝槽道板与圆柱型电池表面接触面积和槽道内工质质量流量对电池热性能和电化学性能的影响,并与无冷却结构的电池放电实验结果进行了比较。柔性铝槽道板工质入口质量流量为5.98 kg/h时,电池表面温度和表面温度差最小,电池的输出电压和容量最佳。此外,在考虑热性能、宏观电化学特性、入口质量流量和冷却性能的基础上对实验进行了优化设计。  相似文献   

13.
歧管式微通道流动特性的研究   总被引:1,自引:0,他引:1  
岐管式微通道(MMC)热沉具有热阻小、结构紧凑、冷却液流量小、流速低、沿流动方向温度分布均匀等优点.本文针对以去离子水为介质的岐管式微通道(宽W=100 μm,深H=300 μm)的流动特性进行了实验研究,实验的雷诺数范围为5O~3500.结果表明工质在微通道内流态由层流向紊流转变的临界雷诺数提前,此外数值模拟结果与实验值也吻合较好.最后在实验基础上,拟合出工质在层流和紊流下的流动阻力经验关联式.  相似文献   

14.
实验以去离子水为工质,研究矩形窄通道内饱和沸腾起始点的影响因素。通过改变矩形板的壁面加热功率密度,工质的质量流量和入口温度分析饱和沸腾起始点的变化规律.实验得出:饱和沸腾段随着加热功率密度的增加而增加,随着质量流量的增加而缩短,随着入口温度的增加而增加,但入口温度在高加热功率密度时对饱和沸腾起始点的影响相对较小,在低加热功率密度下影响较大。  相似文献   

15.
竖直矩形窄缝内流动沸腾压降实验与模型研究   总被引:3,自引:0,他引:3  
本文实验研究了水在间隙为2.1、2.2、3.6 mm的垂直矩形窄通道内流动沸腾压降,包括入口过冷的情况,得到了在不同操作条件下压降随热流密度的变化曲线,同时分析了曲线变化的原因.实验结果发现:在实验参数范围内,流动沸腾的压降随着质量流速、热流密度和入口干度增加而增大;随着窄缝间隙的增大而减小.窄通道内的压降计算与大通道有显著不同,本文针对窄通道的特点,修正了传统的压降计算模型,模型预测值与实验结果比较,误差在±15.4%之内.  相似文献   

16.
文中对竖直圆管内液氮流动沸腾压降进行实验研究,分析热流密度、质量流量对液氮两相流动摩擦压降的影响以及热流密度对测试段总压降的影响。在本实验工况范围内,两相流摩擦压降随着热流密度和质量流速的增加而变大,且测试段总压降随着热流密度的增加而降低。分别利用均相模型、L-M模型和Chisholm B系数模型对实验结果进行预测,并比较了预测值与实验值,结果表明本实验工况下均相模型预测效果最好。  相似文献   

17.
对非共沸混合工质R134a/R32(75/25)在水平微尺度管道内的流动沸腾换热实验结果进行了分析和讨论,以探究微细通道内流动沸腾换热的主导机制。对影响其换热的多种因素(热流密度、质量流量和质量干度)进行了分析,实验得出,当质量干度较低时,热流密度和质量流量共同控制着微尺度管内的换热方式,当热流密度的影响占主导地位时,管道内的换热以核态沸腾为主;当质量流量的影响占主导地位时,管道内的换热以强制对流为主。  相似文献   

18.
利用FLUENT软件,采用VOF多相流模型对水在矩形微通道内流动沸腾过程中气泡的生长进行了数值模拟,分析了壁面热流密度、入口质量通量和接触角对气泡生长速率的影响,并得到了气泡周围的温度和压力分布。结果表明,壁面热流密度和质量通量的增大导致气泡生长速度的增加,而最小的接触角有最大的气泡生长速度,气泡边界上的温度梯度和压力梯度都较大。  相似文献   

19.
动电学效应对微通道内流体流动特性影响很大,其对通道内粒子分布特性的影响使得通道近壁面流体流动特性极不稳定。本文采用分子动力学方法模拟了二维矩形微通道内NaCl稀电解质溶液的流动特性,考虑存在于不同粒子间的Lennard-Jones势能、静电力、以及带电离子与水分子间的相互作用,得到了粒子在通道内的分布特征。结果显示在动电学效应主要作用于通道壁面附近,而主流区域影响极小。Na~+离子在无量纲通道高度达到0.08和0.91时其浓度达到最大值,沿远离壁面其浓度逐渐降低,与壁面电性相反的Cl~-离子则在无量纲通道高度达到0.15和0.84附近浓度最高。其结果与基于连续介质解理论的Boltzamnn统计分布一致。水分子的浓度在壁面附近也较通道中心处高。  相似文献   

20.
王胜  徐进良  张龙艳 《物理学报》2017,66(20):204704-204704
采用分子动力学方法研究了流体在非对称浸润性粗糙纳米通道内的流动与传热过程,分析了两侧壁面浸润性不对称对流体速度滑移和温度阶跃的影响,以及非对称浸润性组合对流体内部热量传递的影响.研究结果表明,纳米通道主流区域的流体速度在外力作用下呈抛物线分布,但是纳米通道上下壁面浸润性不对称导致速度分布不呈中心对称,同时通道壁面的纳米结构也会限制流体的流动.流体在流动过程中产生黏性耗散,使流体温度升高.增强冷壁面的疏水性对近热壁面区域的流体速度几乎没有影响,滑移速度和滑移长度基本不变,始终为锁定边界,但是会导致近冷壁面区域的流体速度逐渐增大,对应的滑移速度和滑移长度随之增大.此时,近冷壁面区域的流体温度逐渐超过近热壁面区域的流体温度,流体出现反转温度分布,流体内部热流逆向传递.随着两侧壁面浸润性不对称程度增加,流体反转温度分布更加明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号