首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-quality type-Ⅱa gem diamond crystals are successfully synthesized in a NiToMn25Co5-C system by temperature gradient method (TGM) at about 5.5 GPa and 1560 K. Al and Ti/Cu are used as nitrogen getters respectively. While nitrogen getter Al or Ti/Cu is added into the synthesis system, some inclusions and caves tend to be introduced into the crystals. When Al is added into the solvent alloy, we would hardly gain high-quality type-Ⅱa diamond crystals with nitrogen concentration Nc 〈 1 ppm because of the reversible reaction of Al and N at high pressure and high temperature (HPHT). Piowever, when Ti/Cu is added into the solvent alloy, high-quality type-Ⅱa diamond crystals with Nc 〈 1 ppm can be grown by decreasing the growth rate of diamonds.  相似文献   

2.
Synthesis of coarse-grain diamond crystals is studied in a China-type SPD6× 1670T cubic high-pressure apparatus with high exact control system. To synthesize high quality coarse-grain diamond crystals, advanced indirect heat assembly, powder catalyst technology and optimized synthesis craft are used. At last, three kinds of coarse- grain diamond (about 0.85 mm) single crystals with hexahedron, hex-octahedron and octahedron are synthesized successfully under HPHT (about 5.4 GPa, 1300-1450℃). The growth characters of different shape crystals are discussed. The results and techniques might be useful for the production of coarse-grain diamonds.  相似文献   

3.
Using three kinds of graphites with different graphitization degrees as carbon source and Fe-Ni alloy powder as catalyst, the synthesis of diamond crystals is performed in a cubic anvil high-pressure and high-temperature apparatus (SPD-6 × 1200). Diamond crystals with perfect hexoctahedron shape are successfully synthesized at pressure from 5.0 to 5.5GPa and at temperature from 1570 to 1770K. The synthetic conditions, nucleation, morphology, inclusion and granularity of diamond crystals are studied. The temperature and pressure increase with the increase of the graphitization degree of graphite. The quantity of nucleation and granularity ofdiamonds decreases with the increase of graphitization degree of graphite under the same synthesis conditions. Moreover, according to the results of the M6ssbauer spectrum, the composition of inclusions is mainly Fe3 C and Fe-Ni alloy phases in diamond crystals synthesized with three kinds of graphites.  相似文献   

4.
Nitrogen is successfully doped in diamond by adding sodium azide (NaN3 ) as the source of nitrogen to the graphite and iron powders. The diamond crystals with high nitrogen concentration, 1000-2200ppm, which contain the same concentrations of nitrogen with natural diamond, have been synthesized by using the system of iron-carbon- additive NAN3. The nitrogen concentrations in diamond increase with the increasing content of NAN3. When the content of NaN3 is increased to 0.7-1.3 wt. %, the nitrogen concentration in the diamond almost remains in a nitrogen concentration range from 1250ppm to 2200ppm, which is the highest value and several times higher than that in the diamond synthesized by a conventional method without additive NaN3 under high pressure and high temperature (HPHT) conditions.  相似文献   

5.
 在4.5~5.0 GPa,1 500~1 800 ℃范围内,在Li基复合氮硼化物的催化体系中添加Li8SiN4后,得到了具有光泽的棕色透明的cBN单晶。研究了cBN晶体的形貌,结果表明,添加Li8SiN4后得到的等积形cBN晶体的百分比明显增多,除部分截角四面体外,多为截角八面体晶体,且棱角尖锐,晶面致密光滑。  相似文献   

6.
One of the most important characteristics and basic phenomena during diamond growth from liquid metal catalyst solutions saturated with carbon at high temperature–high pressure (HPHT) is that there exists a thin metallic film covering on the growing diamond, through which carbon-atom clusters are delivered to the surface of the growing diamond by diffusion. A study of microstructures of such a metallic film and a relation between the thin metallic film and the inclusions trapped in HPHT as-grown diamond single crystals may be helpful to obtain high-purity diamond single crystals. It was found that both the metallic film and the HPHT as-grown diamond single crystals contain some nanostructured regions. Examination by transmission electron microscopy suggests that the microstructure of the thin metallic film is in accordance with nanosized particles contained in HPHT as-grown diamond single crystals. The nanosized particles with several to several tens of nanometers in dimension distribute homogeneously in the metallic film and in the diamond matrix. Generally, the size of the particles in the thin metallic film is relatively larger than that within the diamond matrix. Selected area electron diffraction patterns suggest that the nanosized particles in the metallic film and nanometer inclusions within the diamond are mainly composed of f.c.c. (FeNi)23C6, hexagonal graphite and cubic γ-(FeNi). The formation of the nanosized inclusions within the diamond single crystals is thought not only to relate to the growth process and rapid quenching from high temperature after diamond synthesis, but also to be associated with large amounts of defects in the diamond, because the free energy in these defect areas is very high. The critical size of carbide, γ-(FeNi)and graphite particles within the diamond matrix should decrease and not increase according to thermodynamic theory during quenching from HPHT to room temperature and ambient pressure. Received: 13 September 2001 / Accepted: 12 June 2002 / Published online: 17 December 2002 RID="*" ID="*"Corresponding author. Fax: +86-0531/295-5081; E-mail: yinlw@sdu.edu.cn  相似文献   

7.
硅在cBN单晶合成中的行为   总被引:1,自引:1,他引:0       下载免费PDF全文
 实验制备了复合氮化物Li8SiN4,并对合成温度、合成时间、气流量等因素的影响以及产物的稳定性进行了讨论。研究了Li8SiN4作为触媒添加剂时硅在cBN单晶合成中的作用。结果表明:cBN晶体多为截角八面体,晶面致密光滑;硅参与cBN的合成反应,并以SiO2的形式沉积在cBN表面。  相似文献   

8.
For understanding the mechanism of diamond growth at high temperature–high pressure (HTHP) from a metallic catalyst–graphite system, it is of great interest to perform atomic force microscopy (AFM) experiments, which provide a unique technique different from that of normal optical and electronic microscopy studies, to study the topography of HTHP as-grown diamond single crystals. In the present paper, we report first AFM results on diamond single crystals grown from a Fe-Ni-C system at HTHP to reveal the growth mechanism of diamond single crystals at HTHP. AFM images for as-grown diamond samples show dark etch pits on the (111) surface, indicating dislocations. Some fine particles about 100–300 nm in dimension were directly observed on the (100) diamond surface. These particles are believed to have been formed through transition of graphite to diamond under the effect of the catalyst and to have been transported to the growing diamond surface through a metallic thin film by diffusion. The roughness of the (100) diamond surface is found to be about several tens of nanometers through profile analysis. The diamond growth at HTHP, in a sense, could be considered as a process of unification of these fine diamond particles or of carbon-atom-cluster recombination on the growing diamond crystal surface. Successive growth interlayer steps on the (111) diamond surface were systemically examined. The heights of the growth interlayer steps were measured by sectional analysis. It was shown that the heights of the growth interlayer steps are quite different and range from about 10 to 25 nm. The source of the interlayer steps might be dislocations. The diamond-growth mechanism at HTHP could be indicated by the AFM topography of the fine diamond particles and the train-growth interlayer steps on the as-grown diamond surfaces. Received: 29 March 2001 / Accepted: 20 August 2001 / Published online: 2 October 2001  相似文献   

9.
Cadmium dizinc diborate (CdZn2B2O6) single crystals have been grown for the first time. The crystal structure of CdZn2B2O6 is the same as that of the Cd3Zn3B4O12. The x-ray diffraction, infrared and Raman spectra, differential scanning calorimetry analysis and density indicate that the physical and chemical properties of both crystals are very similar. Especially, the nonlinear optical coefficients of CdZn2B2O6 and Cd3Zn3B4O12 crystals are 2.6 and 2.4 times as large as that of KH2PO4 crystal respectively. Chemical etching experiments indicated that these crystals are very stable in neutral solution and not hygroscopic in air at room temperature.  相似文献   

10.
在高温高压条件下,用hBN-LiH和hBN-Li3N-B为初始材料均可以合成出黑色cBN晶体。拉曼光谱测试结果表明,cBN晶体颜色变黑的原因是晶体中多余B原子的存在造成的。在hBN-Li3N-B体系中,晶体内部有明显的三角形阴影形成,表明从晶体表面的中心到顶角间B原子的含量较多,从表面中心到棱边B原子的含量逐渐减少。而在hBN-LiH体系中所得到的晶体颜色从黑色透明直接变成黑色不透明状态,晶体内部没有出现三角形阴影,表明晶体中作为杂质的B原子分布比较均匀。此两种情况说明,B作为杂质原子进入cBN晶体中可以有两种分布情况,一是居中对称分布,二是均匀分布,从晶体的生长环境和自身的排杂能力方面分析了晶体为什么会出现上述现象。  相似文献   

11.
Cubic BN Sintered with A1 under High Temperature and High Pressure   总被引:1,自引:0,他引:1       下载免费PDF全文
Sintering of cubic boron nitride (cBN) with addition of A1 is carried out in the temperature range 1300-1500℃ and under the pressure 5.5 GPa. When sintered at 1300℃, a weak diffractive peak of hexagonal BN (hBN) is observed in the Al-cBN sample, indicating the transformation from cBN to hBN. No nitrides or borides of A1 are observed, which indicated that A1 does not react with cBN obviously. When the sintering temperature is increased to 1400℃, the diffractive peak of hBN disappears and new phases of A1N and A1B2 are observed, due to reactions between A1 and cBN. When the sintering temperature is further increased to 1500℃, the contents of A1N and A1B2 phases increase and the A1 phase disappears completely.  相似文献   

12.
采用高温高压方法,以六角氮化硼(hBN)为原料、选用氮化锂(Li3N)、氢化锂+氮化锂(LiH+Li3N)、氢化锂(LiH)、氢化锂+氨基锂(LiH+LiNH2)、氮化锂+氨基锂(Li3N+LiNH2)为触媒,在合适的温度、压力及生长工艺条件下,分别得到了厚板状、类球形、八面体或六八面体、扁锥状和片状六边形形貌立方氮化硼(cBN)晶体。总结了不同锂基触媒/添加剂对合成的cBN晶体形貌变化的影响。  相似文献   

13.
Surface acoustic wave (SAW) properties at the x-cut of relaxor-based 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN- 33%PT) ferroelectric single crystals are analyzed theoretically when poled along the [001]c cubic direction. It can be found that PMN-33%PT single crystal is a kind of material with a low phase velocity and high electromechanical coupling coefficient, and the single crystal possesses some cuts with zero power flow angle. The results are based on the material parameters at room temperature. The conclusions provide device designers with a few ideal cuts of PMN-33%PT single crystals. Moreover, choosing an optimal cut will dramatically improve the performance of SAW devices, and corresponding results for crystal systems working at other temperatures could also be figured out by employing the method.  相似文献   

14.
 以(C2H5)2O·BF3和Li3N为原料,于苯热条件下合成氮化硼并研究其相变机理。X射线粉末衍射和傅立叶变换红外吸收光谱分析证明,产物中不仅有hBN和cBN物相存在,而且还发现了正交氮化硼(oBN)和锂硼氮的常压相Li3BN2(O)及高压相Li3BN2(T)存在。分析了Li3BN2在高温高压条件下和在苯热条件下对合成cBN催化机制的差异,探讨了Li3BN2在以Li3N和(C2H5)2O·BF3为原料合成BN的催化机制,提出常压相Li3BN2(O)和高压相Li3BN2(T)分别对生成cBN和oBN起催化作用的观点。  相似文献   

15.
 将黑色、黄色、棕色三种小于50 μm立方氮化硼粉末为样品,研究了其红外光谱、拉曼光谱、反射光谱,结果表明:(1)样品的红外光谱中,1 818 cm-1和1 548 cm-1属于cBN的晶格本征振动,而立方氮化硼的晶格本征振动外的晶体缺陷吸收则发生在~800 cm-1,1 580 cm-1~1 740 cm-1和大于2 400 cm-1处。(2)拉曼光谱测试表明,在1 052 cm-1和1 304 cm-1附近出现的散射与cBN不具有反演中心及cBN具有立方结构这样的事实相一致,并且这种散射伴随着布里渊区中心声子的横向和纵向发射。144 cm-1附近出现的散射,被认为是由于局部振荡模式的出现,在反斯托克斯区造成的信号,这与晶格中杂质缺陷有关。(3)依据得到的反射光谱,计算了cBN单晶禁带宽度,发现这三种cBN都具有大于金刚石的禁带宽度值,分别为:Eg(黑)=6.21 eV,Eg(黄)=5.73 eV,Eg(棕)=5.71 eV。  相似文献   

16.
碳化钒作碳源合成金刚石   总被引:4,自引:0,他引:4       下载免费PDF全文
 以重量比为1∶6的VC和Ni70Mn25Co5合金组成的体系,经6.0 GPa的高压力和1 500 ℃的高温处理20 min后,样品经X射线衍射分析表明VC发生分解,游离出的C生成了石墨和金刚石;该体系生成的金刚石多呈侵蚀性表面,平均粒度约为20 μm。  相似文献   

17.
通过在铁基触媒中添加适量的碳化硼,制备出了具有不同硼含量的含硼金刚石单晶。利用差热分析仪,测量了含硼金刚石单晶的差热和热重。采用Kissinger方法,计算了含硼金刚石单晶在加热过程中发生氧化反应的表观活化能,对比分析掺硼量对含硼金刚石单晶热稳定性的影响。结果表明:差热和热重测量值与表观活化能计算值的变化规律基本一致;随着掺硼量的增加,含硼金刚石单晶的热稳定性先提高后降低,剧烈氧化时表观活化能随着掺硼量的增加而减小。  相似文献   

18.
 通过各种材料的试验和压机设备因素的测定,总结了金刚石生长过程的特性:金刚石晶体是在石墨(G)-触媒(Me)界面上生长;因电阻R(G)>R(Me)温度T(G)>T(Me)以及与外界热交换等原因,使合成腔内产生压力、温度梯度,成为金刚石生长之驱动力。梯度过大过小对金刚石生长均不利;金刚石晶体在G-Me界面两侧是非对称性生长;每个晶粒表面有一特殊结构约20 μm左右厚的金属薄膜,它起到运载碳源和催化的双重作用。要合成粗粒高强金刚石,需要有一个稳定的合成体系。本文分析了该体系状态的性质及稳定的必要性与稳定的具体方法。  相似文献   

19.
Wang  W. K.  Cao  L. M. 《Russian Physics Journal》2001,44(2):178-182
The synthesis of diamond at high pressure and high temperature and the discovery of fullerenes and carbon nanotubes are among the most important achievements in carbon science. In the present work, we report the synthesis of diamond from carbon nanotubes at 4.5 GPa and 1300°C. Under these conditions, no diamond crystals were obtained when graphite was used as the starting material. The detailed investigation shows that at high pressure and high temperature carbon nanotubes first transform into quasi-spherical onion-like structures and then into diamond crystals. Our work suggests that carbon nanotubes can be used for the synthesis of high-quality diamond crystals at lower pressure and temperature.  相似文献   

20.
Recently, Gamal et al. [Chin. Phys. Lett. 22 (2005) 1530] reported the results of electrical conductivity, Hall effect and thermoelectric measurements on p-type Tl2S5 single crystals. From the experimental data for the temperature dependence of differential thermoelectric power, Gamal et al. determined thevalues of 2.66×10-41kg and 2.50×10-41kg, respectively, for the effective masses of electrons and holes in p-type Tl2S5, which are about ten orders of magnitude smaller than the free electron mass (9.11×10-31kg). We argue that the anomalously small values obtained for the effective mass of chargecarriers in Tl2S5 have no physical significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号