首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 通过平衡闪蒸模拟催化剂孔道液体组成、烯烃物理吸附和虚拟烯烃分压等方法,考察了化学反应以外的非本征因素对F-T合成动力学模型的校正. 平衡闪蒸模拟催化剂孔道中烯烃组成的校正计算结果表明,在烯烃浓度出现峰值前,溶解度效应对烯烃再吸附及参与二次反应起主导作用,而在烯烃浓度出现峰值后,烯烃的扩散和物理吸附等效应可能起主导作用. 分析烯烃添加的反应器模拟结果发现,考虑烯烃物理吸附作用的动力学模型校正方法不能够正确反映烯烃添加实验的定性规律,而虚拟烯烃分压校正方法能够正确反映烃分布规律并可定量预测烯烃添加对产物分布规律的影响,这对需要尾气循环的F-T合成工业操作具有重要意义.  相似文献   

2.
This paper describes the extraction of C5–C8 linear α-olefins from olefin/paraffin mixtures of the same carbon number via a reversible complexation with a silver salt (silver bis(trifluoromethylsulfonyl)imide, Ag[Tf2N]) to form room temperature ionic liquids [Ag(olefin)x][Tf2N]. From the experimental (liquid + liquid) equilibrium data for the olefin/paraffin mixtures and Ag[Tf2N], 1-pentene showed the best separation performance while C7 and C8 olefins could only be separated from the corresponding mixtures on addition of water which also improves the selectivity at lower carbon numbers like the C5 and C6, for example. Using infrared and Raman spectroscopy of the complex and Ag[Tf2N] saturated by olefin, the mechanism of the extraction was found to be based on both chemical complexation and the physical solubility of the olefin in the ionic liquid ([Ag(olefin)x][Tf2N]). These experiments further support the use of such extraction techniques for the separation of olefins from paraffins.  相似文献   

3.
 在浆态反应釜中研究了铁/活性炭催化剂上费-托合成(Fischer-Tropschsynthesis,FTS)反应产物分布和链增长几率(Anderson-Schulz-Flory(ASF)链增长几率和本征链增长几率).产物分布通常在C1处和C2处偏离ASF分布,呈现C1处偏高而C2处偏低的情况.本征链增长几率的研究结果表明,以活性炭为载体的铁基费-托合成催化剂上存在烯烃的再吸附二次反应,使产物分布偏离ASF分布.铁/活性炭催化剂上同时伴随水煤气变换(watergasshift,WGS)反应.XRD检测到铁/活性炭催化剂上存在FexC和Fe3O4两种物相.  相似文献   

4.
Using the highly accurate G4 method, we computed the thermodynamic data of 1287 possible reaction products under a wide range of reaction conditions in the Fischer-Tropcsh synthesis (FTS) process. These accurate thermodynamic data provide basic thermodynamic quantities for the actual chemical engineering process and are useful in analyzing product distribution because FTS demonstrates many features of an equilibrium-controlled system. Our results show that the number of thermodynamically allowed products to increase when lowering temperature, raising pressure, and raising H2/CO ratio. At low temperature, high pressure and high H2/CO ratio, many products are thermodynamically allowed and the selectivity of product has to be controlled by kinetic factors. On the other hand, high selectivity of lighter products can be realized in thermodynamics by raising temperature and lowering pressure. We found that the equilibrium product yield will reach a maximum and remain unchanged when lowering temperature, raising pressure, and raising H2/CO ratio to some limits, implying that optimizing reaction conditions has no effect on equilibrium product yields beyond these limits. The thermodynamic analysis is also useful in designing and evaluating FTS reaction mechanisms. We found that reaction pathways through formaldehyde should be discarded because of its extremely low equilibrium yield. Recently, in the FTS process using metal-oxide-zeolite catalysts for the highly selective production of C2-C4 olefins and aromatic hydrocarbons, there are several guesses on the possible reaction intermediates entering the zeolite channel. Our results show that ketene, methanol, and dimethyl ether are three possible reaction intermediates.  相似文献   

5.
A detailed kinetic model of Fischer–Tropsch synthesis (FTS) product formation, including secondary methane formation and 1‐olefin hydrogenation, has been developed. Methane formation in FTS over the cobalt‐based catalyst is well known to be higher‐than‐expected compared to other n‐paraffin products under typical reaction conditions. A novel model proposes secondary methane formation on a different type of active site, which is not active in forming C2+ products, to explain this anomalous methane behavior. In addition, a model of secondary 1‐olefin hydrogenation has also been developed. Secondary 1‐olefin hydrogenation is related to secondary methane formation with both reactions happening on the same type of active sites. The model parameters were estimated from experimental data obtained with Co/Re/γ‐Al2O3 catalyst in a slurry‐phase stirred tank reactor over a range of conditions (T = 478, 493, and 503 K, P = 1.5 and 2.5 MPa, H2/CO feed ratio = 1.4 and 2.1, and X CO = 16–62%). The proposed model including secondary methane formation and 1‐olefin hydrogenation is shown to provide an improved quantitative and qualitative prediction of experimentally observed behavior compared to the detailed model with only primary reactions.  相似文献   

6.
The direct synthesis of lower (C2 to C4) olefins, key building‐block chemicals, from syngas (H2 /CO), which can be derived from various nonpetroleum carbon resources, is highly attractive, but the selectivity for lower olefins is low because of the limitation of the Anderson–Schulz–Flory distribution. We report that the coupling of methanol‐synthesis and methanol‐to‐olefins reactions with a bifunctional catalyst can realize the direct conversion of syngas to lower olefins with exceptionally high selectivity. We demonstrate that the choice of two active components and the integration manner of the components are crucial to lower olefin selectivity. The combination of a Zr–Zn binary oxide, which alone shows higher selectivity for methanol and dimethyl ether even at 673 K, and SAPO‐34 with decreased acidity offers around 70 % selectivity for C2–C4 olefins at about 10 % CO conversion. The micro‐ to nanoscale proximity of the components favors the lower olefin selectivity.  相似文献   

7.
Fischer-Tropsch synthesis (FTS) was carried out using Al2O3-supported Co catalyst coated on metallic monolith. Considering the liberation of a large amont of heat from the highly exothermic FTS reaction, catalytic activity of Co catalyst coated on metallic monolith was tested and compared with that of pellet-type catalysts. The reaction was carried out in a conventional tubular fixed-bed reactor and simulated distillation (SIMDIS) analysis method was used to determine the liquid products distribution. Proper control of degree of reaction, as well as the reaction temperature gave rise to a shift of products selectivity toward higher hydrocarbons, especially C13?C18 diesel range hydrocarbons.  相似文献   

8.
The isothermal kinetics of the Fischer-Tropsch synthesis (FTS) over Fe-Cu-K spray-dried catalyst was studied in a spinning basket reactor. The experiments were carried out at a constant temperature of 523 K, n(H2)/n(CO) feed ratios of 0.8-2.0, reactor pressures of 1.1-2.5 MPa, and space velocity of 0.556×10-3 Nm3/kgcat·s. Kinetic model for hydrocarbon formation was derived on the basis of simplified carbide mechanism to reduce the number of parameters. Two individual rate constants for methane and ethene were considered. Furthermore, the model was modified empirically by non-intrinsic effect, such as physisorption and fictitious olefin pressures that were taken into account, and the influences of secondary reaction of α-olefins on product distribution. The simulation results showed that the experimental phenomena of FTS and the deviations from ASF distribution, such as the relatively high yield of methane and low yield of ethene observed experimentally could be depicted basically.  相似文献   

9.
Density functional theory with the B3LYP hybrid functional and 6–31G* basis set was used to study the geometric and electronic structure of H2C = CHR (R = H, CH3, C2H5, C3H7, C4H9, and C5H11) olefins, their carbocations formed in the addition of the proton to the olefins, R′-S-H aliphatic thiols (R′ = H, CH3, C2H5, and C3H7), the products of the addition of thiols to carbocations, and the final products of the addition of thiols to olefins. The proton affinity of the olefins and the products of the addition of thiols to olefins was calculated. The conclusion was drawn that the limiting stage in the nonradical addition of thiols to olefins catalyzed by acids was proton transfer from the protonated reaction product to the olefin. The theoretical results were compared with the experimental data on the electrophilic addition of polymercaptan to heptene-1.  相似文献   

10.
A method for conducting enantioselective bromolactonization reactions of trisubstituted alkenoic acids, using the C3‐symmetric trisimidazoline 1 and 1,3‐dibromo‐5,5‐dimethyl hydantoin as a bromine source, has been developed. The process generates chiral δ‐lactones that contain a quaternary carbon. The results of studies probing geometrically different olefins show that (Z)‐olefins rather than (E)‐olefins are favorable substrates for the process. The method is not only applicable to acyclic olefin reactants but can also be employed to transform cyclic trisubstituted olefins into chiral spirocyclic lactones. Finally, the synthetic utility of the newly developed process is demonstrated by its application to a concise synthesis of tanikolide, an antifungal marine natural product.  相似文献   

11.
Effect of K promotion on the CO hydrogenation activity and selectivity of coprecipitated Co/Al2O3 has been studied. K addition is found to lower total activity while enhancing C2-C4 olefins selectivity; kinetic data indicate that the reaction mechanism is not affected.  相似文献   

12.
烯烃在催化裂化催化剂上反应机理的初步研究   总被引:5,自引:3,他引:2  
在自制的微反-色谱装置上,进行了单体烯烃和催化裂化汽油在不同条件下的催化裂化反应实验。对单体烯烃的裂化反应规律和汽油中的烯烃在半再生催化剂和待生催化剂上的催化裂化反应规律进行对比分析。结果表明,单体烯烃反应中,C6及C6以下的烯烃主要发生骨架异构和双键异构反应,氢转移和直接裂化反应发生的较少。C7以上的烯烃95%以上发生转化,高温下直接裂化生成C3、C4,氢转移和异构化比率较大。汽油中的烯烃转化主要集中在C7以上,烯烃之间存在一定的交互作用,单体烯烃的催化裂化反应规律可以初步预测汽油中烯烃的转化。催化剂上的结焦类型对汽油中的烯烃的转化方式没有影响。  相似文献   

13.
The catalytic properties of MCl2 (PPh3)2 (M = Fe, A; Co, B; Ni, C) in combination with ethylaluminoxane (EAO) as cocatalyst for ethylene oligomerization have been investigated. Treatment of the MCl2 (PPh3)2 complexes with EAO in toluene generated active catalysts in situ that are capable of oligomerizating ethylene to low‐carbon olefins. The catalytic activity and product distribution were affected by reaction condition, such as reaction temperature, the ratios of Al/M and the reaction time. The activity of 1.70 × 105 g oligomers/ (mol Co. h) for the catalytic system of CoCl2(PPh3)2 with EAO at 200°C was observed, with the selectivity of 91.1% to C4–10 olefins and 70.7% to C4–10 linear α‐olefins.  相似文献   

14.
The interaction between CCl4and olefins with different structures is studied in the presence of copper complexes with P-, S-, and N-containing donor ligands. Kinetic and spectroscopic studies show that the ability of olefins to be coordinated to copper complexes governs the rate, the product composition, and the reaction mechanism. Depending on the olefin and the structure of the metal complex, either typical radical-chain reactions or processes without free radicals are observed.  相似文献   

15.
Selective conversion of syngas to value-added olefins has attracted considerable research interest. Regulating product distribution remains challenging, such as achieving higher olefin selectivity, propylene/ethylene (P/E) and olefin/paraffin (O/P) ratios. A new pentasil zeolite Al-IDM-1 with recently approved − ION structure, composed of 17-membered-ring (MR) extra-large lobed pores and intersected 10-MR medium pores, shows a C2–6= selectivity up to 85 % and a high O/P value of 14 in the conversion of syngas when being combined with ZnaAlbOx oxide. Moreover, for the high-silica Al-IDM-1 with Si/Al ratio of 400, the selectivity of propylene and butene accounts for 88 % in C2–4=, resulting in high P/E (>4) and butene/ethylene (B/E >3) ratios. The high C3–4= selectivity is contributed by two main reasons, that is, the relatively weak acidity of Al-IDM-1 zeolite enhances the olefin-based cycle revealed by the probe reactions of methanol-to-propylene (MTP) and 1-hexene cracking, and the rich isolated internal SiOH groups in Al-IDM-1 promote the desorption of C3–4=, once they are formed inside zeolite pores.  相似文献   

16.
《Thermochimica Acta》1998,315(2):159-168
The temperature-programmed reaction (TPR) technique coupled with the in situ infrared (IR)/mass spectroscopy (MS) analysis has been employed to study the thermal decomposition of polypropylene. These techniques, especially when coupled with a gas chromatograph (GC), are effective for determining thermal stability, product distribution and product evolution as a function of temperature. The polymer decomposes at approximately 475 K yielding hydrocarbons in the C1–C7 range, with propylene, C5 and C6 composing the majority of gaseous products. Decomposition over alumina and 5 wt% Ni/Al2O3 with and without the presence of hydrogen does not affect thermal stability. Also, decomposition over alumina with and without the presence of hydrogen does not affect the depolymerization pathway. The popular β-scission/backbiting mechanism cannot fully explain observations from this study. Possible alternatives are explored.  相似文献   

17.
Ethylene Oligomerization Catalyzed by Nickel(Ⅱ) Diimine Complexes   总被引:1,自引:0,他引:1  
Ethylene oligomerization has been investigated by using catalyst systems composed of nickel(II) diimine complexes (diimine = N, N′‐o‐phenylene bis (salicylideneaminato), N, N′‐o‐phenylenebisbenzal, N, N′‐ethylenebisbenzal) and ethylaluminoxane (EAO). The main products in toluene and at 110–200 °C were olefins with low carbon numbers (C4—C10). Effects of reaction temperature, Al/Ni molar ratio and reaction period on both the catalytic activity and product distribution were explored. The activity of 1.84 × 105 g of oligomer/(molNI · h), with 87.4% of selectivity to C4—C10 olefins, was attained at 200 °C in the reaction when a catalyst composed of NiCl2 (PhCH = o‐NC6H4N = CHPh) and EAO was used.  相似文献   

18.
The reaction mechanism for the complete catalytic cycle of the Heck reaction (between phenyl bromide, C6H5Br, and ethylene, C2H4, in the presence of the base, NEt3 to form the product styrene, C6H5–C2H3), catalyzed by diphosphinopalladium complexes, Pd(PR3)2 {R = H, Me, Ph}, was investigated by using density functional theory (DFT). The relative free energies of the fully-optimized species in gas phase at 298.15 K and 1 atm were corrected for solvation in DMSO at 1 mol/L by using conductor-like polarizable continuum model (CPCM). The calculations indicate a four-step mechanism for the catalysis, including oxidative addition of C6H5Br, migratory insertion of C6H5 to C2H4, β-hydride transfer/olefin elimination of product, and catalyst regeneration by removal of HBr. Our calculations demonstrate that Pd π-complexes can be formed with phenyl bromide and ethylene before the oxidative addition occurs. Subsequently, various reaction paths were studied for the oxidative addition of phenyl bromide to palladium complexes, coordinated by phosphine(s) and/or ethylene. Interestingly, all pathways lead to palladium monophosphine as the active catalyst. Careful exploration was made on two possible pathways for the migratory insertion and β-hydride-transfer/olefin elimination: (1) the neutral path with bromide bound to Pd and (2) the cationic path with prior bromide ion dissociation. The neutral path is preferred to the cationic path, especially when the more bulky phosphines such as triphenylphosphine are involved.  相似文献   

19.
The temperature-dependent 1H NMR spectra of acetylacetonatebis(ethylene)-rhodium, (acac)Rh(C2H4)2 (I), of some related complexes containing methoxy-substituted ethylenes have been measured in toluene-d8 solution. Both monosubstituted [(acac)Rh(C2H4)(olefin), olefin = tetramethoxyethylene (II), cis- and trans-dimethoxyethylene (III and IV)] and disubstituted [(acac)Rh(olefin)2, olefin = cis- and trans-dimethoxyethylene (V and VI), methyl vinyl ether (VII)] derivatives of I have been investigated with respect to hindered intramolecular movements of the ligands. The barriers of olefin rotation increase with an increasing number of methoxy substituents. When the olefin rotation is frozen out; the methoxy substituents of the olefins tend to be turned away from the acetylacetonate ligand unless steric interaction occurs between the two π-coordinated olefins. A hindered movement of the acetylacetonate ligand has been observed in II and V. For this movement which is independent of the olefin rotation, a degenerate rearrangement is proposed of the tetragonal-planar complexes via a tetrahedral transition state.  相似文献   

20.
In this article, two kinds of our transition metal-catalyzed olefin arylations are summarized and discussed. The first one is Ir-catalyzed novel anti-Markovnikov hydroarylation of olefins with benzene. Using this reaction catalyzed by [Ir(μ-acac-O,O′,C3)(acac-O,O′)(acac-C3)]2 (acac = acetylacetonato), 1, straight-chain alkylarenes, which were not obtainable by the conventional Friedel-Crafts aromatic alkylation with olefins, were able to be successfully synthesized directly from arenes and olefins with the higher selectivity than that of branched alkylarenes. This is the first efficient catalyst which shows the desirable high regioselectivity. The reaction of benzene with propylene gave n-propylbenzene and cumene in 61% and 39% selectivities, respectively, and the reaction of benzene and styrene afforded 1,2-diphenylethane in 98% selectivity. The reaction of alkylarene and olefin showed meta and para orientations. A wide range of olefins and arenes can be employed for the synthesis of alkylarenes. The mechanism of the reaction involves C–H bond activation of benzene by Ir center to form Ir–phenyl species. The second reaction is Rh-catalyzed oxidative arylation of ethylene with benzene to directly produce styrene, namely one-step synthesis of styrene. The reaction of benzene with ethylene catalyzed by Rh(ppy)2(OAc) (ppyH = 2-phenylpyridine, OAc = acetate), 3 with Cu oxidizing agent gave styrene and vinyl acetate in 77% and 23% selectivities, respectively, in contrast to those by Pd(OAc)2, 47% of styrene and 53% of vinyl acetate. The mechanism of the reaction involves Rh-mediated C–H bond activation of benzene, which appears to be a rate-determining step. Furthermore, Rh complexes in a Rh(I) oxidation state at the beginning of the reaction work as catalysts for the reaction by addition of acacH and O2 without any oxidizing agent, like Cu salt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号